Abstract:
A light emitting apparatus includes a lamp base, a light-transmissive bulb envelope, a light source for emitting light, and a heat sink coupled to the light source. A solid state LED light bulb may further include a down conversion material. The down conversion material is disposed within the bulb envelope, remote from the light source and between the light source and the lamp base. The heat sink may include at least one metal fin and, additionally or alternatively, include a mesh disposed over at least an outer portion of the bulb envelope. A solid state light bulb may include a light guide for directing the light emitted by the light source. The solid state light bulb configurations place the light source and heat sink at the apex of the light bulb envelope, distant from the lamp base, in order to dissipate heat produced by the light source into the environment. In addition, at least part of the heat sink is outside the light bulb envelope to maximize the heat dissipation.
Abstract:
Methods and systems for modulating a manufactured light source are disclosed. Methods and systems of the present disclosure include sensor assemblies having first and second light sensors to retrieve light spectrum data at a target location, such as from a surface in an interior space at a home, office, or commercial building, that also receives daylight exposure. The first light sensor retrieves the light spectrum data within a spectrum of the manufactured light source. The second light sensor retrieves light spectrum data outside of the spectrum of the manufactured light source, yet within the spectrum of daylight. The light spectrum data is used to define spectral characteristics at the target location, such as a ratio of daylight to the manufactured light source, phase of daylight, and average overall quantity, which are used to maximize light-associated benefits of the spectral composition for the occupants at the target location, such as humans, plants, and animals.
Abstract:
A scattered photon extraction light fixture includes an optic element having a first surface; a light source for emitting short wavelength radiation, the light source disposed opposite, perpendicular, or tangential to the first surface of the optic element; a wavelength- conversion material, disposed on the first surface of the optic element, for receiving and down converting at least some of the short wavelength radiation emitted by the light source and transferring a portion of the received and down converted radiation; and one or more reflectors positioned opposite the wavelength-conversion material. A scattered photon extraction light system includes a plurality of light emitting fixtures. One or more wavelength-conversion materials, in the embodiments of the present invention, are disposed remotely from the light source(s), and used to absorb radiation in one spectral region and emit radiation in another spectral region. Lighting efficiency is improved by capturing the short wavelength and down-converted radiation.
Abstract:
A light emitting apparatus includes a lamp base, a light-transmissive bulb envelope, a light source for emitting light, and a heat sink coupled to the light source. A solid state LED light bulb may further include a down conversion material. The down conversion material is disposed within the bulb envelope, remote from the light source and between the light source and the lamp base. The heat sink may include at least one metal fin and, additionally or alternatively, include a mesh disposed over at least an outer portion of the bulb envelope. A solid state light bulb may include a light guide for directing the light emitted by the light source. The solid state light bulb configurations place the light source and heat sink at the apex of the light bulb envelope, distant from the lamp base, in order to dissipate heat produced by the light source into the environment. In addition, at least part of the heat sink is outside the light bulb envelope to maximize the heat dissipation.
Abstract:
A scattered photon extraction light fixture includes an optic element having a first surface; a light source for emitting short wavelength radiation, the light source disposed opposite, perpendicular, or tangential to the first surface of the optic element; a wavelength-conversion material, disposed on the first surface of the optic element, for receiving and down converting at least some of the short wavelength radiation emitted by the light source and transferring a portion of the received and down converted radiation; and one or more reflectors positioned opposite the wavelength-conversion material. A scattered photon extraction light system includes a plurality of light emitting fixtures. One or more wavelength-conversion materials, in the embodiments of the present invention, are disposed remotely from the light source(s), and used to absorb radiation in one spectral region and emit radiation in another spectral region. Lighting efficiency is improved by capturing the short wavelength and down-converted radiation.
Abstract:
A light emitting apparatus includes a lamp base, a light-transmissive bulb envelope, a light source for emitting light, and a heat sink coupled to the light source. A solid state LED light bulb may further include a down conversion material. The down conversion material is disposed within the bulb envelope, remote from the light source and between the light source and the lamp base. The heat sink may include at least one metal fin and, additionally or alternatively, include a mesh disposed over at least an outer portion of the bulb envelope. A solid state light bulb may include a light guide for directing the light emitted by the light source. The solid state light bulb configurations place the light source and heat sink at the apex of the light bulb envelope, distant from the lamp base, in order to dissipate heat produced by the light source into the environment. In addition, at least part of the heat sink is outside the light bulb envelope to maximize the heat dissipation.