Abstract:
A system for separating particulate from a fluid stream having an inlet solids content, the system comprising: a magnetic dynamic settling vessel comprising at least one magnetic field inside the vessel and/or one magnetized component; at least one inlet for introduction of the fluid stream having a starting solids content; at least one exit for a stream comprising a solids content not greater than the inlet solids content; at least one exit for a fluid stream comprising a solids content not less than the inlet solids content; and a vertical feed conduit extending at least 70% of the distance from the at least one fluid inlet to the at least one exit for a fluid stream comprising a solids content not less than the inlet solids content. A method for separating particulate from a fluid stream having an inlet solids content is also provided.
Abstract:
A system for separating liquids from solids comprising an immobilization unit comprising an immobilization vessel containing a bed of magnetizable material and a magnet configured to produce a magnetic field within the immobilization vessel, wherein the immobilization vessel further comprises an immobilization vessel outlet and an immobilization vessel inlet for a fluid comprising liquid and metal-containing particles. A method for separating solid particles from liquid by introducing a fluid comprising liquid and a first concentration of solid particles into an immobilization unit comprising an immobilization vessel and at least one magnet configured to produce high density magnetic flux lines within the immobilization vessel and/or a high field gradient at or near the surface of the magnetizable material when powered, wherein the immobilization vessel contains therein a bed of magnetizable material; and removing from the immobilization unit a product having a second particle concentration less than the first particle concentration.
Abstract:
A catalyst loading system comprising: a vessel comprising at least one gas distribution nozzle at or near the bottom of the vessel, a top fluid distributor located at or near the top of the vessel, a catalyst inlet through which catalyst is introduced into the vessel, a first contact point at which catalyst introduced into the vessel first contacts the contents of the vessel, and a discharge outlet whereby catalyst exits the vessel. Methods of preparing catalyst slurry for introduction into a downstream reactor or in-situ activation within the vessel utilizing the catalyst loading system are also disclosed.
Abstract:
A catalytic reaction system comprising: a catalytic reactor fluidly connected with at least two slurry loops, wherein the reactor comprises at least as many reactor product outlets and at least as many slurry return inlets as slurry loops; wherein each slurry loop comprises a separation system comprising a separation system inlet, a separation system product outlet, and a concentrated catalyst slurry outlet; a slurry offtake fluidly connecting the separation system inlet with one of the reactor product outlets; and a slurry return fluidly connecting the separation system outlet with one of the slurry return inlets. The system may comprise at least three slurry loops. The system may comprise at least four slurry loops. A method for converting synthesis gas into liquid hydrocarbons via the catalytic reaction system in also disclosed.
Abstract:
A method of utilizing hydrogen in synthesis gas production by forming synthesis gas from one or more carbonaceous materials, the synthesis gas comprising hydrogen and carbon monoxide; separating a hydrogen-rich product and a hydrogen-lean product from the synthesis gas to yield an adjusted synthesis gas product; and activating a hydrocarbon synthesis catalyst with at least a portion of the hydrogen-lean product. A system for carrying out the method is also provided, the system including at least one hydrogen extraction unit and an activation reactor operable to activate hydrocarbon synthesis catalyst, wherein the activation reactor comprises an inlet fluidly connected with the at least one hydrogen extraction unit whereby at least a portion of a hydrogen-lean gas stream, at least a portion of a hydrogen-rich gas stream, or at least a portion of both may be introduced into the activation reactor.
Abstract:
A system for activating Fischer-Tropsch catalyst comprising a reactor having an outlet for overhead gas and operable under conditions whereby a catalyst in a volume of liquid carrier comprising Fischer-Tropsch diesel, hydrocracking recycle oil, or a combination thereof may be activated in the presence of an activation gas; a condenser comprising an inlet fluidly connected to the reactor outlet for overhead gas and comprising a condenser outlet for condensed liquids; and a separation unit comprising an inlet fluidly connected to the condenser outlet and a separator outlet for a stream comprising primarily Fischer-Tropsch diesel; and a recycle line fluidly connecting the separator outlet, a hydrocracking unit, or both to the reactor, whereby Fischer-Tropsch diesel recovered from reactor overhead gas, hydrocracking recycle oil, or a combination thereof may serve as liquid carrier for catalyst in the reactor. A method for activating Fischer-Tropsch catalyst is also provided.
Abstract:
A system for the production of synthetic fuel, the system including a catalytic dual fluidized bed (DFB) configured to produce, from a DFB feedgas, a DFB product containing synthesis gas; and a Fischer-Tropsch (FT) synthesis apparatus fluidly connected with the catalytic DFB, wherein the FT synthesis apparatus includes an FT synthesis reactor configured to produce, from an FT feedgas, an FT overhead and a liquid FT product containing FT wax, wherein the FT feedgas contains at least a portion of the DFB product; and a product separator downstream of and fluidly connected with the FT synthesis reactor, wherein the product separator is configured to separate, from the FT overhead, an FT tailgas and an LFTL product containing LFTL. A method of producing synthetic fuel is also provided.
Abstract:
A system for separating liquids from solids comprising an immobilization unit comprising an immobilization vessel containing a bed of magnetizable material and a magnet configured to produce a magnetic field within the immobilization vessel, wherein the immobilization vessel further comprises an immobilization vessel outlet and an immobilization vessel inlet for a fluid comprising liquid and metal-containing particles. A method for separating solid particles from liquid by introducing a fluid comprising liquid and a first concentration of solid particles into an immobilization unit comprising an immobilization vessel and at least one magnet configured to produce high density magnetic flux lines within the immobilization vessel and/or a high field gradient at or near the surface of the magnetizable material when powered, wherein the immobilization vessel contains therein a bed of magnetizable material; and removing from the immobilization unit a product having a second particle concentration less than the first particle concentration.
Abstract:
A method of utilizing hydrogen in synthesis gas production by forming synthesis gas from one or more carbonaceous materials, the synthesis gas comprising hydrogen and carbon monoxide; separating a hydrogen-rich product and a hydrogen-lean product from the synthesis gas to yield an adjusted synthesis gas product; and activating a hydrocarbon synthesis catalyst with at least a portion of the hydrogen-lean product. A system for carrying out the method is also provided, the system including at least one hydrogen extraction unit and an activation reactor operable to activate hydrocarbon synthesis catalyst, wherein the activation reactor comprises an inlet fluidly connected with the at least one hydrogen extraction unit whereby at least a portion of a hydrogen-lean gas stream, at least a portion of a hydrogen-rich gas stream, or at least a portion of both may be introduced into the activation reactor.
Abstract:
A system for separating particulate from a fluid stream having an inlet solids content, the system comprising: a magnetic dynamic settling vessel comprising at least one magnetic field inside the vessel and/or one magnetized component; at least one inlet for introduction of the fluid stream having a starting solids content; at least one exit for a stream comprising a solids content not greater than the inlet solids content; at least one exit for a fluid stream comprising a solids content not less than the inlet solids content; and a vertical feed conduit extending at least 70% of the distance from the at least one fluid inlet to the at least one exit for a fluid stream comprising a solids content not less than the inlet solids content. A method for separating particulate from a fluid stream having an inlet solids content is also provided.