Abstract:
The present application is directed towards systems and methods for adding components to materials being fluidized in a vibratory mixer by use of atomizers or sprayers. A mechanical system can fluidizes, mix, coat, dry, combine, or segregate materials. The system may comprise a vibratory mixer, mixing vessel containing a first material and a sprayer to introduce a second material. The vibratory mixer may generate a fluidized bed of a first material and the sprayer, coupled to the mixing vessel, may introduce a second material onto the fluidized bed to mix the materials in a uniform and even fashion.
Abstract:
An apparatus and method for forming a fusible coating or structure comprising a combustor that is operative to combust a fuel and contain the resulting flame to produce combustion products; means for cooling the combustion products to produce a hot carrier gas stream; and means for introducing fusible material into the hot carrier gas stream.
Abstract:
The present application is directed towards systems and methods for adding components to materials being fluidized in a vibratory mixer by use of atomizers or sprayers. A mechanical system can fluidizes, mix, coat, dry, combine, or segregate materials. The system may comprise a vibratory mixer, mixing vessel containing a first material and a sprayer to introduce a second material. The vibratory mixer may generate a fluidized bed of a first material and the sprayer, coupled to the mixing vessel, may introduce a second material onto the fluidized bed to mix the materials in a uniform and even fashion.
Abstract:
The present application is directed towards systems for adding components to materials being fluidized in a vibratory mixer by use of atomizers or sprayers. A mechanical system can fluidizes, mix, coat, dry, combine, or segregate materials. The system may comprise a vibratory mixer, mixing vessel containing a first material and a sprayer to introduce a second material. The vibratory mixer may generate a fluidized bed of a first material and the sprayer, coupled to the mixing vessel, may introduce a second material onto the fluidized bed to mix the materials in a uniform and even fashion.
Abstract:
The present application is directed towards systems and methods for evaluating the integrity of objects through non-destructive means. The objects are evaluated for flaws and defects through the use of applied acoustic energy. The applied acoustic energy creates a dynamic response of the object being evaluated to determine the location of any flaws or defects in the object. During excitation, the flaws and defects in a sample object generate heat at the damaged or defective regions through frictional interactions of the discontinuities. A flaw detection system includes, a plurality of acoustic energy sources to excite an object, a camera to record metrics of the response of the object and a processor configured to receive and analyze the response of the object.
Abstract:
The present application is directed towards systems for adding components to materials being fluidized in a vibratory mixer by use of atomizers or sprayers. A mechanical system can fluidizes, mix, coat, dry, combine, or segregate materials. The system may comprise a vibratory mixer, mixing vessel containing a first material and a sprayer to introduce a second material. The vibratory mixer may generate a fluidized bed of a first material and the sprayer, coupled to the mixing vessel, may introduce a second material onto the fluidized bed to mix the materials in a uniform and even fashion.
Abstract:
A continuous acoustic chemical microreactor system is disclosed. The system includes a continuous process vessel (CPV) and an acoustic agitator coupled to the CPV and configured to agitate the CPV along an oscillation axis. The CPV includes a reactant inlet configured to receive one or more reactants into the CPV, an elongated tube coupled at a first end to the reactant inlet and configured to receive the reactants from the reactant inlet, and a product outlet coupled to a second end of the elongated tube and configured to discharge a product of a chemical reaction among the reactants from the CPV. The acoustic agitator is configured to agitate the CPV along the oscillation axis such that the inner surface of the elongated tube accelerates the one or more reactants in alternating upward and downward directions along the oscillation axis.
Abstract:
A continuous acoustic chemical microreactor system is disclosed. The system includes a continuous process vessel (CPV) and an acoustic agitator coupled to the CPV and configured to agitate the CPV along an oscillation axis. The CPV includes a reactant inlet configured to receive one or more reactants into the CPV, an elongated tube coupled at a first end to the reactant inlet and configured to receive the reactants from the reactant inlet, and a product outlet coupled to a second end of the elongated tube and configured to discharge a product of a chemical reaction among the reactants from the CPV. The acoustic agitator is configured to agitate the CPV along the oscillation axis such that the inner surface of the elongated tube accelerates the one or more reactants in alternating upward and downward directions along the oscillation axis.
Abstract:
The present application is directed towards systems for adding components to materials being fluidized in a vibratory mixer by use of atomizers or sprayers. A mechanical system can fluidizes, mix, coat, dry, combine, or segregate materials. The system may comprise a vibratory mixer, mixing vessel containing a first material and a sprayer to introduce a second material. The vibratory mixer may generate a fluidized bed of a first material and the sprayer, coupled to the mixing vessel, may introduce a second material onto the fluidized bed to mix the materials in a uniform and even fashion.
Abstract:
The present application is directed towards systems for adding components to materials being fluidized in a vibratory mixer by use of atomizers or sprayers. A mechanical system can fluidizes, mix, coat, dry, combine, or segregate materials. The system may comprise a vibratory mixer, mixing vessel containing a first material and a sprayer to introduce a second material. The vibratory mixer may generate a fluidized bed of a first material and the sprayer, coupled to the mixing vessel, may introduce a second material onto the fluidized bed to mix the materials in a uniform and even fashion.