Abstract:
A user equipment (UE) front end (FE) that is adapted for multiband simultaneous transmission and reception is provided. The UE FE includes a first multi-filter device having a transmit (TX) band-pass filter adapted to pass a first TX signal band associated with a first radio access technology type, and a receive (RX) band-pass filter adapted to pass a second RX signal band associated with a second radio access technology type. The UE FE also includes a second multi-filter device having a TX band-pass filter adapted to pass a second TX signal band associated with the second radio access technology type and an RX band-pass filter adapted to pass the first RX signal band associated with the first radio access technology type. The first radio access technology type and the second radio access technology type are preferably long term evolution (LTE) and code division multiple access 2000 (CDMA2000), respectively, or viceversa.
Abstract:
A radio frequency (RF) system includes an RF power amplifier (PA), which uses an envelope tracking power supply voltage to provide an RF transmit signal, which has an RF envelope; and further includes an envelope tracking power supply, which provides the envelope tracking power supply voltage based on a setpoint. RF transceiver circuitry, which includes envelope control circuitry and an RF modulator is disclosed. The envelope control circuitry provides the setpoint, such that the envelope tracking power supply voltage is clipped to form clipped regions and substantially tracks the RF envelope between the clipped regions, wherein a dynamic range of the envelope tracking power supply voltage is limited. The RF modulator provides an RF input signal to the RF PA, which receives and amplifies the RF input signal to provide the RF transmit signal.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.
Abstract:
A direct current (DC)-DC converter, which includes a parallel amplifier and a switching supply, is disclosed. The switching supply includes switching circuitry, a first inductive element, and a second inductive element. The parallel amplifier has a feedback input and a parallel amplifier output. The switching circuitry has a switching circuitry output. The first inductive element is coupled between the switching circuitry output and the feedback input. The second inductive element is coupled between the feedback input and the parallel amplifier output.
Abstract:
A digital log gain to digital linear gain multiplier is disclosed. The digital log gain to digital linear gain multiplier includes a log gain splitter adapted to split a log gain input into an integer log part and a remainder log part. A log scale-to-linear scale converter is adapted to output a linear gain value in response to the integer log part and the remainder log part. A gain multiply circuit is adapted to multiply a digital signal by the linear gain value to output a gain-enhanced digital signal.
Abstract:
Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system for managing the power delivered to a linear RF power amplifier. The pseudo-envelope follower power management system may include a switch mode power supply converter and a parallel amplifier cooperatively coupled to provide a linear RF power amplifier supply to the linear RF power amplifier. The pseudo-envelope follower power management system may include a charge pump configured to power the parallel amplifier. The charge pump may generate a plurality of output voltage levels. The charge pump may be either a boost or a boost/buck charge pump. The pseudo-envelope follower power management system may include an offset voltage control circuit configured to provide feedback to the switch mode power supply converter to regulate an offset voltage developed across a coupling device that couples the output of the parallel amplifier to the linear RF power amplifier supply.
Abstract:
This disclosure relates generally to radio frequency (RF) switching converters and RF amplification devices that use RF switching converters. For example, an RF switching converter may include a switching circuit that receives a power source voltage and a switching controller that receives a target average frequency value identifying a target average frequency. The switching circuit is switchable so as to generate a pulsed output voltage from the power source voltage. The switching controller switches the switching circuit such that the pulsed output voltage has an average pulse frequency. The switching controller also detects that the average pulse frequency of the pulsed output voltage during a time period differs from the target average frequency, and reduces a difference between the average pulse frequency and the target average frequency. In this manner, the effects of manufacturing variations and operational variations on the average pulse frequency can be eliminated, or at least diminished.
Abstract:
Disclosed is a coordinate rotation digital computer (CORDIC) having a maximum value circuit that selects a larger of the first component or the second component. A minimum value circuit selects a minimum operand that is a smaller one of the first component or the second component. Also included are N rotator stages, each corresponding to a unique one of N predetermined vectors, each of the N rotator stages having a first multiply circuit to multiply the maximum operand by a cosine coefficient of a predetermined vector to output a first rotation component, a second multiply circuit for multiplying the minimum operand by a sine coefficient of the predetermined vector to output a second rotation component, and an adder circuit for adding the first rotation component to the second rotation component to output one of N results, and a maximum value circuit for outputting a maximum one of the N results.
Abstract:
A power management system for a radio frequency (RF) power amplifier (PA) load is disclosed. The power management system includes a first switching power supply that is adapted to output a relatively constant voltage, an electronic switch for selectively coupling the first switching power supply to the RF PA load, and a second switching power that is adapted to output a dynamic DC voltage to the RF PA load. The power management system further includes a control system that is adapted to close the electronic switch to supply the relatively constant DC voltage in addition to the dynamic DC voltage to the RF PA load in a first mode and to open the electronic switch wherein the relatively constant DC voltage is not supplied to the RF PA load in a second mode.
Abstract:
Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system used to manage the power delivered to a linear RF power amplifier.