Abstract:
Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system for managing the power delivered to a linear RF power amplifier. The pseudo-envelope follower power management system may include a switch mode power supply converter and a parallel amplifier cooperatively coupled to provide a linear RF power amplifier supply to the linear RF power amplifier. The pseudo-envelope follower power management system may include a charge pump configured to power the parallel amplifier. The charge pump may generate a plurality of output voltage levels. The charge pump may be either a boost or a boost/buck charge pump. The pseudo-envelope follower power management system may include an offset voltage control circuit configured to provide feedback to the switch mode power supply converter to regulate an offset voltage developed across a coupling device that couples the output of the parallel amplifier to the linear RF power amplifier supply.
Abstract:
Disclosed is a coordinate rotation digital computer (CORDIC) having a maximum value circuit that selects a larger of the first component or the second component. A minimum value circuit selects a minimum operand that is a smaller one of the first component or the second component. Also included are N rotator stages, each corresponding to a unique one of N predetermined vectors, each of the N rotator stages having a first multiply circuit to multiply the maximum operand by a cosine coefficient of a predetermined vector to output a first rotation component, a second multiply circuit for multiplying the minimum operand by a sine coefficient of the predetermined vector to output a second rotation component, and an adder circuit for adding the first rotation component to the second rotation component to output one of N results, and a maximum value circuit for outputting a maximum one of the N results.
Abstract:
A radio frequency (RF) system includes an RF power amplifier (PA), which uses an envelope tracking power supply voltage to provide an RF transmit signal, which has an RF envelope; and further includes an envelope tracking power supply, which provides the envelope tracking power supply voltage based on a setpoint. RF transceiver circuitry, which includes envelope control circuitry and an RF modulator is disclosed. The envelope control circuitry provides the setpoint, such that the envelope tracking power supply voltage is clipped to form clipped regions and substantially tracks the RF envelope between the clipped regions, wherein a dynamic range of the envelope tracking power supply voltage is limited. The RF modulator provides an RF input signal to the RF PA, which receives and amplifies the RF input signal to provide the RF transmit signal.
Abstract:
A direct current (DC)-DC converter, which includes a parallel amplifier and a switching supply, is disclosed. The switching supply includes switching circuitry, a first inductive element, and a second inductive element. The parallel amplifier has a feedback input and a parallel amplifier output. The switching circuitry has a switching circuitry output. The first inductive element is coupled between the switching circuitry output and the feedback input. The second inductive element is coupled between the feedback input and the parallel amplifier output.
Abstract:
A parallel amplifier and a parallel amplifier power supply are disclosed according to one embodiment of the present disclosure. The parallel amplifier power supply provides a parallel amplifier power supply signal, which is adjustable on a communications slot-to-communications slot basis. During envelope tracking, the parallel amplifier regulates an envelope power supply voltage based on the parallel amplifier power supply signal. The parallel amplifier and an offset capacitance voltage control loop are disclosed according to an alternate embodiment of the present disclosure. The parallel amplifier has a parallel amplifier output, which is coupled to an envelope tracking power supply output via an offset capacitive element. The offset capacitive element has an offset capacitive voltage. The offset capacitance voltage control loop regulates the offset capacitive voltage, which is adjustable on a communications slot-to-communications slot basis.
Abstract:
A parallel amplifier (14), a switching supply (12), and a radio frequency (RF) notch filter (18) are disclosed. The parallel amplifier has a parallel amplifier output, such that the switching supply is coupled to the parallel amplifier output. Further, the RF notch filter is coupled between the parallel amplifier output and a ground. The RF notch filter has a selectable notch frequency, which is based on an RF duplex frequency.
Abstract:
Radio frequency (RF) transmitter circuitry, which includes an RF power amplifier (PA) and an envelope tracking power supply, is disclosed. The RF PA receives and amplifies an RF input signal to provide an RF transmit signal using an envelope power supply signal. The envelope tracking power supply provides the envelope power supply signal, which has switching ripple. Further, the envelope tracking power supply operates in either a normal switching ripple mode or a modified switching ripple mode, such that during the normal switching ripple mode, the envelope power supply signal has normal switching ripple, and during the modified switching ripple mode, the envelope power supply signal has modified switching ripple. When the modified switching ripple is required, the envelope tracking power supply operates in the modified switching ripple mode.
Abstract:
An open loop envelope tracking system calibration technique and circuitry are proposed. A radio frequency power amplifier receives a modulated signal. An envelope tracker power converter generates a modulated power amplifier supply voltage for the radio frequency power amplifier based on a control signal derived from the modulated signal. A first output power and a second output power of the radio frequency power amplifier are measured when the control signal is respectively delayed by a first delay period and a second delay period. A sensitivity of the output power of the radio frequency power amplifier is near a maximum near the first delay period and the second delay period. The first delay period and/or the second delay period are adjusted until the first output power substantially equals the second output power. The first delay period and the second delay period are used to obtain a calibrated fine tuning delay offset.
Abstract:
Power control circuitry is provided for controlling an output power of a transmitter of a mobile terminal operating according to a continuous time transmit scheme such as Wideband Code Division Multiple Access (WCDMA). Transmit circuitry processes a quadrature baseband signal to provide a radio frequency transmit signal. The radio frequency transmit signal is coupled to the power control circuitry via a coupler and processed to provide a feedback amplitude signal. The power control circuitry operates to remove an amplitude modulation component from the feedback signal using a reference amplitude signal generated from the quadrature baseband signal, thereby providing a measured gain signal of the transmit circuitry. Based on the measured gain signal and a target output power, the power control circuitry operates to control a gain of the transmit circuitry such that the output power of the transmit circuitry is within a predetermined range about the target output power.