Abstract:
A dielectric resonator antenna (DRA), having: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure having N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost first volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N-1); a signal feed electromagnetically coupled to one or more of the plurality of volumes of dielectric materials; and, the plurality of volumes of dielectric materials defining therein a first geometrical path having a first direction that extends from the signal feed to a diametrically opposing side of the plurality of volumes of dielectric materials, and defining therein a second geometrical path having a second direction that is orthogonal to the first direction of the first geometrical path, the second geometrical path having an effective dielectric constant that is less than an effective dielectric constant of the first geometrical path.
Abstract:
A dielectric resonator antenna (DRA) includes: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure comprising N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N−1); and a signal feed disposed and structured to be electromagnetically coupled to one or more of the plurality of volumes of dielectric materials.
Abstract:
A tunable dielectric resonator antenna includes a coupler in electrical communication with an input, a ground plane coupled to an end of the coupler, a first dielectric resonator at least partially surrounding the coupler and an actuator that moves the ground plane relative to an end of the first dielectric resonator to vary a fundamental frequency of the tunable dielectric resonator.
Abstract:
A magneto-dielectric material operable between a minimum frequency and a maximum frequency, having: a plurality of layers that alternate between a dielectric material and a ferromagnetic material, lowermost and uppermost layers of the plurality of layers each being a dielectric material; each layer of the plurality of ferromagnetic material layers having a thickness equal to or greater than 1/15th a skin depth of the respective ferromagnetic material at the maximum frequency, and equal to or less than l/5th the skin depth of the respective ferromagnetic material at the maximum frequency; each layer of the plurality of dielectric material layers having a thickness and a dielectric constant that provides a dielectric withstand voltage across the respective thickness of equal to or greater than 150 Volts peak and equal to or less than 1,500 Volts peak; and, the plurality of layers having an overall thickness equal to or less than one wavelength of the minimum frequency in the plurality of layers.
Abstract:
An array apparatus includes a plurality of spaced apart dielectric resonators, and a plurality of spaced apart signal lines disposed in one-to-one relationship with respective ones of the plurality of resonators. Each one of the respective ones of the plurality of signal lines is disposed in off-axis electrical signal communication with a first portion of the respective ones of the plurality of resonators.
Abstract:
A method for the manufacture of a dielectric resonator antenna (DRA) or array of DRAs, the DRA having: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure having N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N-1); and, a signal feed disposed and structured to be electromagnetically coupled to one or more of the plurality of volumes of dielectric materials. The method including molding at least one of the plurality of volumes of the dielectric material, or all of the volumes of the dielectric material.
Abstract:
A dielectric resonator antenna (DRA) includes: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure comprising N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(1) forms an innermost volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(1) to V(N−1); and a signal feed disposed and structured to be electromagnetically coupled to one or more of the plurality of volumes of dielectric materials.
Abstract:
In an embodiment, an electromagnetic device, comprises a substrate a substrate comprising a dielectric layer and a first conductive layer; at least one dielectric structure comprising at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having an average dielectric constant and an optional second dielectric portion that extends into an optional via. The at least one dielectric structure is bonded to the substrate by at least one of: a mechanical interlock between the second dielectric portion and the substrate due to the at least one interlocking slot comprising a retrograde surface; an intermediate layer located in between the dielectric structure and the substrate having a roughened surface; or an adhesive material located in between the dielectric structure and the substrate. A method of making the device can comprise injection molding a dielectric composition onto the substrate to form the dielectric substrate.
Abstract:
A dielectric resonator antenna (DRA), includes: an electrically conductive ground structure; a plurality of volumes of dielectric materials disposed on the ground structure comprising N volumes, N being an integer equal to or greater than 3, disposed to form successive and sequential layered volumes V(i), i being an integer from 1 to N, wherein volume V(l) forms an innermost first volume, wherein a successive volume V(i+1) forms a layered shell disposed over and at least partially embedding volume V(i), wherein volume V(N) at least partially embeds all volumes V(l) to V(N-1); wherein a portion of the dielectric material of volume V(N) bifurcates at least a portion of volumes V(l) to V(N-1); and a signal feed electromagnetically coupled to one or more of the plurality of volumes of dielectric materials.