Abstract:
A method for making a gas turbine engine matrix composite structure. The method includes providing at least one metal core element, fabricating a matrix composite component about the metal core element, and removing at least part of the metal core element from the matrix composite component by introduction of a halogen gas. SiC/SiC, C/C/SiC, C/SiC or oxide/oxide CMC's are made. The structure is used for gas turbine blades. A carbon release on the metal core is converted to SiC.
Abstract:
One embodiment of the present invention is a unique method of manufacturing a component for a turbomachine, such as an airfoil. Another embodiment is a unique airfoil. Yet another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for cooled gas turbine engine components. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Abstract:
In some examples, a coating may include at least one feature that facilitates visual determination of a thickness of the coating. For example, the coating may include a plurality of microspheres disposed at a predetermined depth of the coating. The plurality of microspheres may define a distinct visual characteristic. By inspecting the coating and viewing at least one of the microspheres, the thickness of the coating may be estimated. In some examples, the plurality of microspheres may be embedded in a matrix material, and the distinct visual characteristic of the microspheres may be different than the visual characteristic of the matrix material. In other examples, the at least one feature may include at least one distinct layer in the coating system that includes a distinct visual characteristic, such as a color of the distinct layer.
Abstract:
A method for making a gas turbine engine matrix composite structure. The method includes providing at least one metal core element, fabricating a matrix composite component about the metal core element, and removing at least part of the metal core element from the matrix composite component by introduction of a halogen gas. SiC/SiC, C/C/SiC, C/SiC or oxide/oxide CMC's are made. The structure is used for gas turbine blades. A carbon release on the metal core is converted to SiC.
Abstract:
In some examples, a method includes identifying a damaged area in a ceramic matrix composite coating of an in-service component; applying a restoration slurry to the damaged area of the ceramic matrix composite coating, wherein the restoration slurry comprises a liquid carrier and a restoration coating material; drying the restoration slurry to form a dried restoration slurry; and heat treating the dried restoration slurry to form a restored portion of the ceramic matrix composite coating. In some examples, an assembly may include a component including a substrate and a coating on the substrate, where the coating defines a damaged portion; masking around the damaged portion on undamaged portions of the coating; and a restoration slurry in the damaged portion, wherein the restoration slurry comprises a liquid carrier and a restoration coating material.
Abstract:
A method includes providing a ceramic fiber preform with a range of 20 to 40 volume percent fiber which can include silicon carbide fibers; coating the ceramic fiber preform with a boron nitride interface coating; infiltrating the ceramic fiber preform with a ceramic matrix with a range of 20 to 40 volume percent silicon carbide; infiltrating the ceramic fiber preform with a constituent material such as boron carbide, boron, and carbon; and infiltrating the ceramic fiber preform with a eutectic melt material where the metallic eutectic melt can include at least one material from a group consisting of: a transition metal-silicon eutectic melt such as zirconium silicide, a transition metal-boride eutectic melt such as zirconium boride, and a transition metal-carbide eutectic melt such as zirconium carbide.
Abstract:
One embodiment of the present invention is a unique method of manufacturing a component for a turbomachine, such as an airfoil. Another embodiment is a unique airfoil. Yet another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for cooled gas turbine engine components. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Abstract:
In some examples, a method includes identifying a damaged area in a ceramic matrix composite coating of an in-service component; applying a restoration slurry to the damaged area of the ceramic matrix composite coating, wherein the restoration slurry comprises a liquid carrier and a restoration coating material; drying the restoration slurry to form a dried restoration slurry; and heat treating the dried restoration slurry to form a restored portion of the ceramic matrix composite coating. In some examples, an assembly may include a component including a substrate and a coating on the substrate, where the coating defines a damaged portion; masking around the damaged portion on undamaged portions of the coating; and a restoration slurry in the damaged portion, wherein the restoration slurry comprises a liquid carrier and a restoration coating material.
Abstract:
A method may include oxidizing a surface of a silicon-containing substrate to form a layer including silica on the surface of the silicon-containing substrate. The method also may include depositing, from a slurry including at least one rare earth oxide, a layer including the at least one rare earth oxide on the layer including silicon. The method additionally may include heating at least the layer including silica and the layer including the at least one rare earth oxide to cause the silica and the at least one rare earth oxide to react and form a layer including at least one rare earth silicate.