Abstract:
A mixture and technique for coating an internal surface of an article is generally described. In one aspect, a method includes introducing a mixture comprising an aluminum source and an organo halocarbon activator into an internal cavity of an article. In some embodiments, the method may further include heating the article and the mixture to a temperature sufficient to form an aluminum halide, which deposits on a surface of the internal cavity to form a coated article. In further embodiments, the method may also include depositing on an external surface of the article a first layer comprising Pt, Si, and a reactive element selected from the group consisting of Hf, Y, La, Ce, Zr, and combinations thereof, and depositing a second layer comprising Al on the first layer to form an alloy including a .gamma.--Ni + .gamma.'-Ni3Al phase constitution, where the second layer is deposited with the organo halocarbon activator.
Abstract:
[01051 A mixture and technique for coating an internal surface of an article is generally described. In one aspect, a method includes introducing a mixture comprising an aluminum source and an organo halocarbon activator into an internal cavity of an article. In some embodiments, the method may further include heating the article and the mixture to a temperature sufficient to form an aluminum halide, which deposits on a surface of the internal cavity to form a coated article. In further embodiments, the method may also include depositing on an external surface of the article a first laver comprising Pt. Si; and a reactive element selected from the -group consisting of Hf, Y, La, Ce, Zr, and combinations thereof, and depositing a second laver comprising Al on the first layer to form an alloy including a ?Ni + ?3-Ni3Al phase constitution, where the second laver is deposited with the organo halocarbon activator. FIG. 4A
Abstract:
A mixture and technique for coating an internal surface of an article is generally described. In one aspect, a method includes introducing a mixture comprising an aluminum source and an organo halocarbon activator into an internal cavity of an article. In some embodiments, the method may further include heating the article and the mixture to a temperature sufficient to form an aluminum halide, which deposits on a surface of the internal cavity to form a coated article. In further embodiments, the method may also include depositing on an external surface of the article a first layer comprising Pt, Si, and a reactive element selected from the group consisting of Hf, Y, La, Ce, Zr, and combinations thereof, and depositing a second layer comprising Al on the first layer to form an alloy including a .gamma.--Ni + .gamma.'-Ni3Al phase constitution, where the second layer is deposited with the organo halocarbon activator.
Abstract:
A method of controlling the final coating thickness of a diffused aluminide coating on a metal substrate. The method includes: (a) depositing an alumina-doped platinum-silicon powder onto a metal substrate, (b) heating the coated substrate to diffuse the platinum-silicon powder into the substrate and removing the undiffused scale, (c) depositing an aluminum-bearing powder onto the platinum-silicon-enriched substrate, and (d) heating the coated substrate to diffuse the aluminum-bearing powder into the substrate and removing the undiffused scale. The depositions are preferably done electrophoretically, in which case the Pt-Si deposition bath is doped with alumina or some other inert particulate. Alternatively, slurry deposition may be used. The method may also be used to deposit Pd-Si coatings onto metal substrates.
Abstract:
A method of controlling the final coating thickness of a diffused aluminide coating on a metal substrate. The method includes: (a) depositing an alumina-doped platinum-silicon powder onto a metal substrate, (b) heating the coated substrate to diffuse the platinum-silicon powder into the substrate and removing the undiffused scale, (c) depositing an aluminum-bearing powder onto the platinum-silicon-enriched substrate, and (d) heating the coated substrate to diffuse the aluminum-bearing powder into the substrate and removing the undiffused scale. The depositions are preferably done electrophoretically, in which case the Pt-Si deposition bath is doped with alumina or some other inert particulate. Alternatively, slurry deposition may be used. The method may also be used to deposit Pd-Si coatings onto metal substrates.