Abstract:
In some examples, the disclosure describes an article and a method of making the same that includes a substrate including a ceramic or a ceramic matrix composite including silicon carbide, where the substrate defines an outer substrate surface and a plurality of grooves formed in the outer substrate surface, where each respective groove of the plurality of grooves exhibits an anchor tooth that spans an edge of the respective groove, and where the plurality of grooves define an average groove width less than about 20 micrometers, and a coating formed on the outer surface of the substrate, where the coating at least partially fills the plurality of grooves of the substrate.
Abstract:
An article may include an array of features formed in a substrate and may be coated with a coating layer. The array of features may mitigate stress experienced by the coated article. In particular, the array of features may reduce or limit crack propagation at the interface between the substrate and the coating layer. In some examples, the article is an airfoil that includes a tip that defines an edge. An array of features is formed on the surface of the tip, where the array of features is proximate to the edge, and the array of features does not intersect the edge. The airfoil includes a coating layer formed on the surface of the tip and the array of features.
Abstract:
An article may include an array of features formed in a substrate and may be coated by a thermal barrier coating (TBC). The array of features may mitigate thermal stress experienced by the coated article. In particular, the array of features may reduce or limit crack propagation at or above the interface of a thermally insulative layer and a bond coat in the TBC. In some embodiments, the array may be formed proximate to and substantially aligned with cooling holes formed in the substrate. In other embodiments, an article may include a first array of features formed in a first location of a substrate and a second array of features formed in a second location of a substrate. The first and second locations may be determined or selected based on a prediction of thermal stresses that the substrate will experience at the first and second locations during use. FIG. 1B
Abstract:
This invention is directed to a coated article having an erosion-resistant coating and a method of providing the erosion-resistant coating to the article. The coated article has an increased useful lifespan and will resist erosion even in high-temperature environments. The coated article includes an organic resin substrate, a high-temperature erosion-resistant coating, and a bonding layer to secure the coating to the substrate. The bond coating can comprise a material selected from zinc, aluminum, aluminum-silicon alloy, chromium, titanium, nickel, silicon, tin, antimony, copper, iron, stainless steel, silver, and mixtures thereof. The erosion-resistant coating can be provided as a substantially non-porous layer comprising a material selected from the group of carbides, fluorides, nitrides, oxides and mixtures thereof of materials such as nickel, cobalt, iron, chromium, tungsten, and molybdenum. The organic resin substrate is prepared to receive the erosion-resistant coating by grip-blasting the resin surface. The metallic bond coat is then applied to the resin surface, and an erosion-resistant coating is deposited on the metallic bond coating.
Abstract:
An abradable coating may include a rare earth silicate. The abradable coating may be deposited over a substrate, an environmental barrier coating, or a thermal barrier coating. The abradable coating may be deposited on a gas turbine blade track or a gas turbine blade shroud to form a seal between the gas turbine blade track or gas turbine blade shroud and a gas turbine blade. The abradable coating may also include a plurality of layers, such as alternating first and second layers including, respectively, a rare earth silicate and stabilized zirconia or stabilized hafnia.
Abstract:
An article may include an array of features formed in a substrate and may be coated with a coating layer. The array of features may mitigate stress experienced by the coated article. In particular, the array of features may reduce or limit crack propagation at the interface between the substrate and the coating layer. In some examples, the article is an airfoil that includes a tip that defines an edge. An array of features is formed on the surface of the tip, where the array of features is proximate to the edge, and the array of features does not intersect the edge. The airfoil includes a coating layer formed on the surface of the tip and the array of features. FIG.4,14B,14C
Abstract:
An article may include a substrate including a metal or alloy; a bond coat directly on the substrate; an intermediate ceramic layer on the bond coat; and an abradable ceramic layer directly on the intermediate ceramic layer. The intermediate ceramic layer includes a stabilized tetragonal prime phase constitution and defines a first porosity. The abradable ceramic layer includes zirconia or hafnia stabilized in the tetragonal prime phase by a second mixture including between about 5 wt. % and about 10 wt. % ytterbia, between about 0.5 wt. % and about 2.5 wt. % samaria, and between about 1 wt. % and about 4 wt. % of at least one of lutetia, scandia, ceria, neodymia, europia, or gadolinia, and a balance zirconia or hafnia. The abradable ceramic layer defines a second porosity, and the second porosity is higher than the first porosity.
Abstract:
An article may include an array of features formed in a substrate and may be coated with a coating layer. The array of features may mitigate stress experienced by the coated article. In particular, the array of features may reduce or limit crack propagation at the interface between the substrate and the coating layer. In some examples, the article is an airfoil that includes a tip that defines an edge. An array of features is formed on the surface of the tip, where the array of features is proximate to the edge, and the array of features does not intersect the edge. The airfoil includes a coating layer formed on the surface of the tip and the array of features.
Abstract:
An abradable coating may include a rare earth silicate. The abradable coating may be deposited over a substrate, an environmental barrier coating, or a thermal barrier coating. The abradable coating may be deposited on a gas turbine blade track or a gas turbine blade shroud to form a seal between the gas turbine blade track or gas turbine blade shroud and a gas turbine blade. The abradable coating may also include a plurality of layers, such as alternating first and second layers including, respectively, a rare earth silicate and stabilized zirconia or stabilized hafnia.
Abstract:
An article may include an array of features formed in a substrate and may be coated by a thermal barrier coating (TBC). The array of features may mitigate thermal stress experienced by the coated article. In particular, the array of features may reduce or limit crack propagation at or above the interface of a thermally insulative layer and a bond coat in the TBC. In some embodiments, the array may be formed proximate to and substantially aligned with cooling holes formed in the substrate. In other embodiments, an article may include a first array of features formed in a first location of a substrate and a second array of features formed in a second location of a substrate. The first and second locations may be determined or selected based on a prediction of thermal stresses that the substrate will experience at the first and second locations during use.