Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus for optically detecting and identifying liquid waterdrops and ice crystals in the air, including an irradiation part and a detection part. SOLUTION: The irradiation part outputs irradiated beams of circularly polarized light. The detection part receives back-scattered light of circularly polarized light from water content in clouds, in response to irradiation beam. The back-scattered light of circularly polarized light is passed through a circularly polarized light device and converted to the back scattered light of linearly polarized light, and the converted light is divided into two components. By an optional selection, each of the two components is subjected to further receiving a linearly polarized light for removing all orthogonally polarized light of leakage type. Next, two components are detected optically and by using the resulting detection signal, one or more parameters reflecting the presence/absence of ice crystal and/or waterdrops in the air are calculated. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A device for optically detecting and distinguishing airborne liquid water droplets and ice crystals includes an illumination portion and a detection portion. The illumination portion (312) outputs a circularly polarized illuminating beam (318). The detection portion receives circularly polarized backscattered light from moisture in the cloud, in response to the illuminating beam. The circularly polarized backscattered light (322) is passed through a circular polarizer (333) to convert it into linearly polarized backscattered light, which is split into two components. Each of the two components is optionally subject to further linear polarization to filter out any leakage-type orthogonal polarization. The two components are then optically detected and the resulting detection signals are used to calculate one or more parameters reflective of the presence or absence of airborne ice crystals and/or water droplets.