Abstract:
The invention relates to a tube bundle reactor having a flat feed dome. Alternatively, the discharge dome can also be designed flat. The flat design reduces the reaction heat developing in the hood in reaction types that take place not only in the tube bundle (non-catalyzed reactions and reactions with homogenously distributed catalyst). Undesired reactions that already take place in the dome due to accumulated heat are thus heavily suppressed, whereby greater selectivity in temperature-sensitive reactions is achieved. Additionally, the temperature distribution within the domes can be precisely controlled. The tube bundle reactor comprises a tube bundle that has a feed end connected to a feed dome of the tube bundle reactor, wherein the feed dome is designed in a flat shape having a cross-sectional surface at the feed end and an inner volume, and the ratio of the inner volume to the cross-sectional surface is less than 0.35 m. The invention is furthermore implemented by a method for operating a tube bundle reactor, comprising: introducing a reactant mixture into a tube bundle and converting at least a portion of the reactant mixture into a product inside the tube bundle. The introduction step comprises: feeding the reactant mixture into an inner space of a feed dome of the tube bundle reactor and forwarding the reactant mixture into a feed end of the tube bundle in the form of a fluid flow. The fluid flow has a cross-sectional surface upon entering the feed end and the inner space of the feed dome through which the fluid flows has an inner volume; wherein the ratio of the inner volume to the cross-sectional surface is less than 0.35 m.
Abstract:
The present application describes a process for regenerating a ruthenium catalyst for the hydrogenation of benzene, which comprises flushing the catalyst with inert gas in a regeneration step until the original or part of the original activity is attained.
Abstract:
The invention relates to a method for producing maleic anhydride by the heterogeneous catalytic gas phase oxidation of hydrocarbons comprising at least four carbon atoms with gases containing oxygen, in the presence of a volatile phosphorus compound, on a catalyst containing vanadium, phosphor and oxygen in a multitube flow reactor unit with at least one reaction zone that is cooled by a heat-transfer medium, at a temperature ranging between 350 and 500 °C. In the first reaction zone, in relation to the educt supply, the supply temperature and/or the supply quantity is set in such a way that the average temperature of the heat transfer medium in the first reaction zone TSB(1st zone), said temperature being produced by the average value formation of the supply temperature and the drainage temperature of the heat-transfer medium, fulfils the formulas (I) and (II): (I) TSB(1st zone)
Abstract:
The present invention relates to a process for preparing at least one monocyclic ketone having 4 to 20 carbon atoms by reacting a mixture G1 comprising at least one monocyclic olefin having 4 to 20 carbon atoms with a mixture G2 comprising at least dinitrogen monoxide, this reaction being carried out adiabatically.
Abstract:
The invention relates to a method for producing hydrocyanic acid (HCN) by means of catalytic dehydration of gaseous formamide in a reactor having an inner reactor surface consisting of a steel-containing iron, chromium and nickel. The invention also relates to a reactor for producing hydrocyanic acid by means of catalytic dehydration of gaseous formamide, said reactor having an inner reactor surface consisting of a steel-containing iron, chromium and nickel. The invention further relates to the use of the inventive reactor in a method for producing hydrocyanic acid by means of catalytic dehydration of gaseous formamide.
Abstract:
1. A process for the catalytic gas-phase oxidation of propene to acrolein in a multiple contact tube fixed-bed reactor through whose space surrounding the contact tubes only one heatexchange medium circuit is passed, at elevated temperature on catalytically active multimetal oxides with a propene conversion for a single pass of selectivity of heat-exchange medium through the multiple contact tube fixedbed reactor longitudinally, considered over the reaction container as a whole, to the contact tubes in cocurrent to the reaction-gas mixture and secondly superposing a transverse flow within the reaction container by means of an arrangement of successive baffles along the contact tubes which leaves passage cross sections free, so as to give a meandrous flow of the heat-exchange medium, seen in longitudinal section through the contact tube bundle, and setting the flow rate of the circulated heat-exchange medium so that its temperature rises by from 2 to 10.degree.C between the point of entry into the reactor and the point of exit out of the reactor.
Abstract:
A process for the catalytic gas-phase oxidation of acrolein to acrylic acid in a multiple contact tube fixed-bed reactor through whose space surrounding the contact tubes only one heat-exchange medium circuit is passed, at elevated temperature on catalytically active multimetal oxides with an acrolein conversion for a single pass of ity of exchange medium through the multiple contact tube fixed-bed reactor longitudinally, considered over the reaction container as a whole, to the contact tubes in cocurrent to the reaction-gas mixture and secondly superposing a transverse flow within the reaction container by means of an arrangement of successive baffles along the contact tubes which leaves passage cross sections free, so as to give a meandrous flow of the heat-exchange medium, seen in longitudinal section through the contact tube bundle, and setting the flow rate of the circulated heat-exchange medium so that its temperature rises by from 2 to 10.degree.C between the point of entry into the reactor and the point of exit out of the reactor.
Abstract:
BASFAKTIENQESELLSCHAFT O.Z.0050/41580 Preparation of phthalic anhydride from o-xylene of the disclosure: Phthalic anhydride is prepared in a multiple tube reactor provided withseparate salt baths, the temperature of the salt bath used for cooling the first layer of catalyst, as regarded in the direction of flow of the reaction mixture, being from 2.degree. to 20.degree.C higher than that of the salt bath(s) associated with the following layer(s).
Abstract:
In a process for preparing acrolein, acrylic acid or a mixture thereof from propane, propane is partially dehydrogenated to propylene in a first stage, the product gas mixture resulting therefrom is, after separating off hydrogen and water vapor, used as feed to an oxidation reactor, the propylene formed in the dehydrogenation is partially oxidized in the oxidation reactor using molecular oxygen in the presence of non-dehydrogenated propane as inert diluent gas to give acrolein, acrylic acid or a mixture thereof and the propane present in the product gas mixture of the partial oxidation is subsequently recirculated to the dehydrogenation stage A.