Abstract:
A three dimensional sensor includes an illumination source (1) that produces broadband, high intensity optical energy including a number of individual wavelength components. The components are impinged in a spot on a target (6). Dispersion is applied to the light reflected from the spot, either before target impingement, after target impingement, or both, whereby light of different wavelengths is focused at different ranges. The wavelength of maximum reflection is detected to determine the target range. In one embodiment, temporal modulation is applied to the light before target impingement and a stationary detector (5) determines the target range by relating the maximum light received to the time it is received, and thus the wavelength. In another embodiment, all wavelengths are reflected from the target simultaneously, the reflected beam is chromatically dispersed in the transverse direction and a detector array, or a linear position sensor, is employed to determine the transverse position of the maximum amplitude of the transversely dispersed beam. The transverse position, being related to a particular wavelength, contains information from which the range to the target is determinable. Wavelength dependent reflection may be compensated.
Abstract:
A chromatic optical ranging sensor, comprising:
means for focusing a source beam (30) of optical energy onto a target (6) from a known location, whereby different wavelengths of said source beam are focused at different distances from said known location; means for collecting a reflected beam from said target (6); means for detecting and interpolating said reflected beam to determine a distance of said target from said known location, means for separating said reflected beam into a focused portion and a unfocused portion; and means for determining a ratio of an amplitude of said focused portion to an amplitude of said unfocused portion.
Abstract:
A chromatic optical ranging sensor, comprising: means for focusing a source beam (30) of optical energy onto a target (6) from a known location, whereby different wavelengths of said source beam are focused at different distances from said known location; means for collecting a reflected beam from said target (6); means for detecting and interpolating said reflected beam to determine a distance of said target from said known location, means for separating said reflected beam into a focused portion and a unfocused portion; and means for determining a ratio of an amplitude of said focused portion to an amplitude of said unfocused portion.
Abstract:
An apparatus for detecting a polarization altering substance, such as ice, on a surface includes a polarizing filter on the surface between the surface and the polarization altering substance. When the polarizing filter includes alternating regions having orthogonal polarizing properties, only one viewing of the surface through a blocking filter is required. When light, either polarized or unpolarized, reflects off the surface, it passes through the polarizing filter and becomes polarized. Reflected light that additionally passes through ice after leaving the polarizer becomes unpolarized. When viewed through a blocking polarizer filter, polarized light passing through ice appears bright due to the unpolarizing effect of ice. On the other hand, polarized light not passing through ice retains its polarization and appears dark when viewed through a blocking filter. Since the polarizing filter is between the surface and the viewer, the surface can be metallic, dielectric, or painted without affecting the results. If the proper blocking orientation for the viewer is not known in advance, the Stokes coefficients can be calculated if views are taken through a series of specified polarizing filters. The ratio of polarized light returned to the viewer compared to the unpolarized light returned to the viewer can then be calculated from any arbitrary position. A retroreflective substance on the surface further enhances the effect for systems employing an active illumination source located coaxially with or adjacent to the imaging system.
Abstract:
A method and apparatus for detecting a presence of a polarization altering substance on a specular surface includes transmitting light to the surface over a transmitting path and receiving the transmitted light from the surface and from the polarization altering substance. An intensity of the light is measured in an optical non-isolator state and in an isolator state before being compared to reference data established for the specific specular surface. The reference data are preferably established by measuring an intensity of the light in both an optical non-isolator state and in an isolator state for a known surface when the polarization altering substance is absent from the known surface.
Abstract:
An arrangement for scanning the measurement field of view of a three-dimensional measurement system, in which the measurement system is pivoted through a relatively small motion to scan a relatively large area of volume. The measurement system is rotated via a control unit which accurately controls the rotation. Mathematical corrections are applied to determine the true measured coordinates.