Abstract:
A pressure transmitter connectable to a process line provides an output responsive to a pressure in the process line. The transmitter includes a housing having a base with a process end coupled to an interior cavity formed in the housing, a sensor for sensing the pressure and an isolating assembly mounted at the process end of the housing and isolating fluid in the process line from the interior cavity. The isolating assembly includes an isolation diaphragm configured to be fluidically coupled to the process pressure in the process line, and an isolator plug positioned in the process of the housing adapter. The isolator plug having a lower plug portion providing a first end surface adjacent the isolation diaphragm, an upper plug portion providing a second end surface distally spaced from the first end surface and adjacent a sensor cavity in which the sensor is positioned, a connection mechanism connecting the lower and upper plug portions, and a capillary filled with isolation fluid and extending from the first end surface through the lower and upper plug portions to the second end surface thereby coupling the pressure through the isolation diaphragm and the capillary to the sensor cavity and the sensor. The upper plug portion is formed from a first material and the lower plug portion is formed from a second material having higher corrosion resistance than the first material.
Abstract:
A process variable transmitter includes a process variable sensor, and an electromagnetic interference (EMI) protection circuit coupled to the process variable sensor. The process variable transmitter also includes a hermetic module enclosing the EMI protection circuit, and electrical connectors coupled to the EMI protection circuit within the hermetic module. The electrical connectors are configurable from outside the hermetic module to connect electronic components of the EMI protection circuit in a configuration that provides transient protection.
Abstract:
A pressure transmitter connectable to a process line provides an output responsive to a pressure in the process line. The transmitter includes a housing having a base with a process end coupled to an interior cavity formed in the housing, a sensor for sensing the pressure and an isolating assembly mounted at the process end of the housing and isolating fluid in the process line from the interior cavity. The isolating assembly includes an isolation diaphragm configured to be fluidically coupled to the process pressure in the process line, and an isolator plug positioned in the process of the housing adapter. The isolator plug having a lower plug portion providing a first end surface adjacent the isolation diaphragm, an upper plug portion providing a second end surface distally spaced from the first end surface and adjacent a sensor cavity in which the sensor is positioned, a connection mechanism connecting the lower and upper plug portions, and a capillary filled with isolation fluid and extending from the first end surface through the lower and upper plug portions to the second end surface thereby coupling the pressure through the isolation diaphragm and the capillary to the sensor cavity and the sensor. The upper plug portion is formed from a first material and the lower plug portion is formed from a second material having higher corrosion resistance than the first material.
Abstract:
A process variable transmitter for use in an industrial process includes a housing having a cavity formed therein. The housing has a barrier which divides the cavity into first and second cavities. Preferably, measurement circuitry in the first cavity is configured to measure a process variable of the industrial process. A terminal block assembly is positioned in the second cavity. The terminal block assembly forms a seal with the housing thereby forming a third cavity between the barrier and a circuit board of the terminal block assembly.
Abstract:
A process variable transmitter includes a process variable sensor, and an electromagnetic interference (EMI) protection circuit coupled to the process variable sensor. The process variable transmitter also includes a hermetic module enclosing the EMI protection circuit, and electrical connectors coupled to the EMI protection circuit within the hermetic module. The electrical connectors are configurable from outside the hermetic module to connect electronic components of the EMI protection circuit in a configuration that provides transient protection.
Abstract:
Embodiments of the present disclosure are directed to field device housing assemblies and field devices that include the housing assemblies. One embodiment of the field device housing assembly includes a main housing, a cover having a proximal end connected to the main housing, a transparent panel and a retainer ring. An interior wall of the cover includes a threaded section that is concentric to a central axis, and a flange extending radially inward from the interior wall toward the central axis. The transparent panel is received within a socket defined by the interior wall and the flange. The retainer ring is secured to the threaded section of the interior wall. The transparent panel is clamped between the retainer ring and the flange.
Abstract:
A process variable transmitter for use in an industrial process includes a housing having a cavity formed therein. The housing has a barrier which divides the cavity into first and second cavities. Preferably, measurement circuitry in the first cavity is configured to measure a process variable of the industrial process. A terminal block assembly is positioned in the second cavity. The terminal block assembly forms a seal with the housing thereby forming a third cavity between the barrier and a circuit board of the terminal block assembly.