Abstract:
According to the invention, a user connection cable (TAL) that is to be associated with a user connection circuit (SLIC) and is used for connecting at least one user (TN) to at least one communication network is verified regarding switching on of a positive distribution voltage in the strands (a, b). The user connection circuit (SLIC) is initially switched to the silent interval mode and a test impedance (I) is switched between the strands (a, b) of the user connection cable (TAL), whereupon the current (i) flowing across the strands (a, b) and the voltage (u) to ground of a strand (b) are measured. Advantageously, the measurements are taken via measuring devices disposed on the user connection subassembly (SLMA).
Abstract:
According to the invention, a user connection cable (TAL) that is to be associated with a user connection circuit (SLIC) and is used for connecting at least one user (TN) to at least one communication network is verified regarding switching on of a positive distribution voltage in the strands (a, b). The user connection circuit (SLIC) is initially switched to the silent interval mode and a test impedance (I) is switched between the strands (a, b) of the user connection cable (TAL), whereupon the current (i) flowing across the strands (a, b) and the voltage (u) to ground of a strand (b) are measured. Advantageously, the measurements are taken via measuring devices disposed on the user connection subassembly (SLMA).
Abstract:
The invention relates to a method and to a device for testing the function for inverting the polarity on a subscriber connection line (TAL) comprising several wires (a, b), in order to connect at least one subscriber to a subscriber connection line (SLM), which comprises at least one inverting device (RG) and a current measuring device (MG) which is associated with the inverting device (RG). In a first step, the subscriber connection component (SLM) is separated from the inverting device (RG) and forces physical inversion on the wires (a, b) of the subscriber connection line (TAL). In a second step, the inverting function of the inverting device (RG) is activated. In a subsequent third step, the subscriber connection component (SLM) is separated from the device (DC) which forces the physical inversion and is connected to the inverting device (RG). The correct function of inversion is tested during all three steps by measuring the direction of the current flow.
Abstract:
In a method for checking a subscriber line with a first and a second electrical line, wherein each line is connected to an encoder/decoder via a subscriber line circuit, the first line is connected to ground, a resistance of the second line is increased, an audio signal is outputted from the encoder/decoder to the first line; and a first frequency-selective signal is measured at a point at which the encoder/decoder is connected to the first line. Further, the second line is connected to ground, a resistance of the first line is increased, a further audio signal is output from the encoder/decoder to the second line, and a second frequency-selective signal is measured at a point at which the encoder/decoder is connected to the second line. An amplitude difference between the first and second frequency-selective signals is ascertained.
Abstract:
Test functions to test an operability of a subscriber circuit are integrated in the subscriber circuit. The test functions use existing components and do not significantly burden the signal processor of the subscriber circuit. The subscriber circuit is provided in a digital telephone exchange having connectable subscriber lines and has a high-voltage section and a low-voltage section. Once an alternating current, which is produced by a tone generator, has been fed into connecting paths, a frequency-selective current threshold-value comparison is carried out, by which the operability of the subscriber circuit can quickly be confirmed.
Abstract:
In a method for checking a subscriber line with a first and a second electrical line, wherein each line is connected to an encoder/decoder via a subscriber line circuit, the first line is connected to ground, a resistance of the second line is increased, an audio signal is outputted from the encoder/decoder to the first line; and a first frequency-selective signal is measured at a point at which the encoder/decoder is connected to the first line. Further, the second line is connected to ground, a resistance of the first line is increased, a further audio signal is output from the encoder/decoder to the second line, and a second frequency-selective signal is measured at a point at which the encoder/decoder is connected to the second line. An amplitude difference between the first and second frequency-selective signals is ascertained.
Abstract:
The invention relates to a method and to a device for testing the function for inverting the polarity on a subscriber connection line (TAL) comprising several wires (a, b), in order to connect at least one subscriber to a subscriber connection line (SLM), which comprises at least one inverting device (RG) and a current measuring device (MG) which is associated with the inverting device (RG). In a first step, the subscriber connection component (SLM) is separated from the inverting device (RG) and forces physical inversion on the wires (a, b) of the subscriber connection line (TAL). In a second step, the inverting function of the inverting device (RG) is activated. In a subsequent third step, the subscriber connection component (SLM) is separated from the device (DC) which forces the physical inversion and is connected to the inverting device (RG). The correct function of inversion is tested during all three steps by measuring the direction of the current flow.
Abstract:
An adjustment and current-measurement method for a subscriber line circuit of a digital telephone exchange is integrated in the low-voltage section of the subscriber line circuit. A previously determined disturbance variable, which is stored in the low-voltage section with a reversed mathematical sign, is added to the currents which are to be measured, for example, for an adjustment of the supply current or of the operability of the subscriber line circuit. This makes it possible to carry out a current measurement for already corrected current levels.