Abstract:
Disclosed is a catalyst comprising a zeolite comprising a framework, the framework comprising silicon and aluminum, and a noble metal. The zeolite has undergone at least a first exchange with a Group I or II cation or ammonium and thereafter is contacted with a second Group I or II cation. The step of contacting comprises an exchange, incipient wetness, or dry impregnation. The noble metal is deposited at the zeolite.
Abstract:
An olefin synthesis plant comprising: a feed pretreatment section configured to pretreat a feed stream; a pyrolysis section comprising one or more pyrolysis reactors configured to crack hydrocarbons in the feed stream in the presence of a diluent to produce a cracked gas stream; a primary fractionation and compression section configured to provide heat recovery from and quenching of the cracked gas stream; remove a component from the cracked gas stream; and compress the cracked gas stream, thus providing a compressed cracked gas stream; and/or a product separation section configured to separate a product olefin stream from the compressed cracked gas stream, wherein the olefin synthesis plant is configured such that, relative to a conventional olefin synthesis plant, more of the energy and/or the net energy required by the olefin synthesis plant and/or one or more sections thereof, is provided by a non-carbon based and/or renewable energy source and/or electricity.
Abstract:
A process for producing methyl tert-butyl ether (MTBE) comprising introducing a butane feed stream (n-butane, i-butane) and hydrogen to a hydrogenolysis reactor comprising a hydrogenolysis catalyst to produce a hydrogenolysis product stream comprising hydrogen, methane, ethane, propane, i-butane, and optionally n-butane; separating the hydrogenolysis product stream into a first hydrogen-containing stream, an optional methane stream, a C 2 to C 3 gas stream (ethane, propane), and a butane stream (i-butane, optionally n-butane); feeding the butane stream to a dehydrogenation reactor to produce a dehydrogenation product stream, wherein the dehydrogenation reactor comprises a dehydrogenation catalyst, and wherein the dehydrogenation product stream comprises hydrogen, i-butane, and isobutylene; and feeding the dehydrogenation product stream and methanol to an etherification unit to produce an unreacted methanol stream, an unreacted isobutylene stream, and an MTBE stream.
Abstract:
An integrated process for increasing olefin production is described through which heavy cracker residues of fluid catalytic cracking unit and steam cracking unit are completely mixed, and mixed stream is properly recycled and further combined with atmospheric tower bottoms. Combined stream is deasphalted and hydrotreated to produce a proper feedstock for steam cracking unit for manufacturing light olefin compounds. The integrated process produces higher amount of light olefins than a substantially similar process without processing the heavy cracker residues.
Abstract:
Certain embodiments of the invention are directed to methods for performing alkane dehydrogenation to alkenes. In certain aspects the methods include dehydrogenation of propane to propylene In certain aspects the methods use a ceramic membrane assisted process operated at temperatures in the range of 350 to 400 °C. In certain aspects the membrane can be based on polysiloxane silica precursors, crosslinked by subjection to pyrolysis at 700 °C under inert atmosphere.
Abstract:
Certain embodiments of the invention are directed to methods for performing alkane dehydrogenation to alkenes. In certain aspects the methods include dehydrogenation of propane to propylene In certain aspects the methods use a ceramic membrane assisted process operated at temperatures in the range of 350 to 400 °C. In certain aspects the membrane can be based on polysiloxane silica precursors, crosslinked by subjection to pyrolysis at 700 °C under inert atmosphere.
Abstract:
A chemical synthesis plant comprising: one or more reactors configured for producing, from one or more reactants, a process stream comprising at least one chemical product; a feed preparation system configured to prepare one or more feed streams comprising one or more of the one or more reactants for introduction into the reactor; and/or a product purification system configured to separate the at least one chemical product from reaction byproducts, unreacted reactants, or a combination thereof within the process stream, wherein the chemical synthesis plant is configured such that a majority (e.g., greater than 50, 60, 70, 80, 90, or 100%) of the net energy needed for heating, cooling, compressing, or a combination thereof utilized via the one or more reactors, the feed preparation system, the product purification system, or a combination thereof is provided from an intermittent energy source (IES).
Abstract:
An ammonia synthesis plant comprising: a feed pretreating section operable to pretreat a feed stream; a syngas generation section operable to reform the feed stream to produce a reformer product stream; a shift conversion section operable to subject the reformer product stream to the water gas shift reaction, to produce a shifted gas stream comprising more hydrogen than the reformer gas stream; a purification section operable to remove at least one component from the shifted gas stream, and provide an ammonia synthesis feed stream; and/or an ammonia synthesis section operable to produce ammonia from the ammonia synthesis feed stream, wherein the ammonia synthesis plant is configured such that, relative to a conventional ammonia synthesis plant, more of the energy required by the ammonia synthesis plant or one or more sections thereof is provided by a non-carbon based energy source, a renewable energy source, and/or electricity.
Abstract:
A process for increasing olefin production from refinery that processes hydrocarbon streams that are rich in aromatic compounds and includes steam cracking and hydrotreating an aromatically rich feedstock to produce a hydrotreated pyrolysis gasoline stream and light pyrolysis oil byproduct, saturating at least one additional naphtha/hydrocarbon stream together with the hydrotreated pyrolysis gasoline stream or together with the light pyrolysis oil byproducts to form a first naphthene stream, and steam cracking the first naphthene stream to produce olefins.
Abstract:
Processes for dehydroaromatization of C6 paraffins to form aromatic hydrocarbons are disclosed. The processes include contacting a mixture of branched and linear paraffins with at least two catalysts to produce aromatic hydrocarbons. One catalyst has a higher relative aromatization reactivity and another catalyst has a higher relative isomerization activity. In a common example, a mixture of branched and linear hexanes is contacted with aromatization and isomerization catalysts to produce benzene.