Abstract:
The invention relates to an active device (100) having variable energy/optical properties, comprising an active system (1, 12) between a protective substrate (2) and a protective cover (3), which is chosen from an essentially inorganic electrochemical system, an optical-valve system, a liquid-crystal system, a gasochromic system, a thermochromic system, means for sealing against liquid water and/or water vapour, a surround (50) made of at least one metal-based part (5a, 5b) on the perimeter of the device, the surround being assembled to the cover and to the substrate by assembly means (61' to 64') forming at least part of the water-vapour sealing means.
Abstract:
An electronically controlled system with variable optical and/or power transmission or reflection properties, comprising at least one carrier substrate (51, 52) provided with a stack of layers (3) enabling active species migration, particularly an electrochromic substrate including at least two active layers (EC1, EC2) having at least one layer with an electrolytic function therebetween, said stack being arranged between two electronic conductors (2, 4) respectively connected to respective lower and upper power inputs, characterized in that the layer with an electrolytic function incorporates at least one mixed layer (Eref) based on a metal layer and a passivation layer made of the same metal as the metal layer.
Abstract:
The invention concerns an electrochemical/electrically-driven device, with variable optical and/or energetic properties, comprising at least one carrier substrate provided with an electroactive layer or a stack of electroactive layers arranged between a so-called lower electrode and a so-called upper electrode. The invention is characterized in that at least one of the lower or upper electrodes comprises at least four layers one of which at least one functional metal layer with intrinsic electrically conductive properties, said functional metal layer being associated with an electrochemical barrier layer made of electrically conductive material transparent in the visible light, said electrochemical barrier layer being associated with a protective layer against moisture made of electrically conductive material transparent in the visible light and said functional layer being associated with a first undercoat made of electrically conductive material transparent in the visible light.
Abstract:
The invention concerns a glazing comprising successively a first rigid substrate (S1), a second rigid substrate (S2), at least one active system (3) including at least one layer and arranged between the substrates (S1 and S2), at least one polymer film (f1) with glass fragment retention in case of breakage being provided between the substrate (S1) and the substrate (S2). The invention is characterized in that the active system (3) is located on the inner surface (2) of the substrate (S1).
Abstract:
Electrochemical/ electrically controllable device having variable optical and/or energetic characteristics, comprising at least one first carrier substrate (S1) provided with an electroconducting layer (4) associated with a first stack (3) of electroactive layers and at least one second carrier substrate (S1') provided with an electroconducting layer (4') associated with a second stack (3') of electroactive layers, characterized in that the first and second stacks, respectively, function optically in series on at least part of their surface and are separated by an electrically insulating means (7).
Abstract:
The inventive electrochemical system comprises at least one substrate, at least one electroconductive layer, at least one electrochemically active layer for reversibly inserting ions, in particular cations of H + , Li + , Na + , Ag + -type or OH anions and at least one electrolyte functionality layer, wherein the electrolyte comprises at least one substentially mineral layer which is embodied in a non-oxidised form and whose ionic conductivity is generated or amplified by incorporating nitrogenous compound(s), in particular nitrided, optionally hydrogenated or fluorinated.
Abstract:
The invention concerns a luminous structure and more precisely a planar or substantially planar luminous structure (1000) comprising two opposite walls (2, 3) having main surfaces (21 to 32) and delimiting an inner space (10), a light source (6) arranged in the inner space and a electric supply for said source, the structure having at least one substantially transparent portion or a globally transparent portion to form at least one skylight, the structure being capable of illuminating with at least one luminous zone of one of said main surfaces (21 to 32), an element (100) having a reflecting surface (109) in the visible light arranged opposite at least one portion of the luminous zone. The invention is characterized in that said element is switchable, said reflecting surface being capable of turning into a substantially or globally transparent surface over at least one area or inversely.
Abstract:
The invention relates to a method of powering an electrically-controlled system with variable optical/energy reflection or transmission properties, consisting of at least one carrier substrate which is equipped with a stack of layers enabling the migration of active species and comprising at least two active layers which are separated by an electrolyte, said stack being disposed between two electrodes which are connected respectively to lower and upper current supplies. The invention is characterised in that it consists in applying a second energy potential (P2, P2') between the current supplies, which can be varied as a function of time, together with a first constant energy potential (P1, P1'), said first and second energy potentials being adapted to ensure switching between two different optical/energy reflection or transmission property states, E1 and E2.
Abstract:
Procedimiento para la descongelación de un cristal transparente con una instalación calefactora eléctrica (7), que comprende, sobre la base de un proceso de descongelación iniciado manual o automáticamente, las siguientes etapas: Etapa A): medir la temperatura del cristal antes de aplicar por primera vez una tensión de calentamiento, terminando el procedimiento en el caso de que la temperatura del cristal exceda valor umbral inferior de la temperatura, o se aplica una tensión de calentamiento de más de 100 voltios en la instalación calefactora durante un periodo de tiempo de máximo 2 minutos, en el caso de que la temperatura del cristal sea igual o menor que el valor umbral inferior de la temperatura, de manera que la tensión de calentamiento y el periodo de calentamiento se seleccionan de tal manera que se genera una potencia calefactora de al menos 2 kilovatios (kW) por metro cuadrado (m2), y se ejecuta la etapa B), en la que la duración del periodo de calentamiento se selecciona en función de la temperatura del cristal medida en la etapa A), de manera que con una temperatura más elevada del cristal se selecciona un periodo de calentamiento más corto y con una temperatura más baja del cristal se selecciona un periodo de calentamiento más largo; Etapa B): medir la temperatura del cristal después del comienzo del periodo de calentamiento, de manera que se termina el proceso de descongelación en el caso de que la temperatura del cristal alcance un valor umbral superior de la temperatura, o se realiza la etapa C), en el caso de que la temperatura del cristal sea menor que el valor umbral superior de la temperatura; Etapa C): aplicar una tensión de calentamiento de más de 100 voltios a la instalación calefactora durante un periodo de calentamiento de máximo 2 minutos, de manera que se seleccionan la tensión de calentamiento y el periodo de calentamiento de tal manera que se genera una potencia de calentamiento de al menos 2 kilovatios (kW) por metro cuadrado (m2), y repetir la etapa B), en la que selecciona la duración del periodo de calentamiento en función en función de la temperatura del cristal medida en la etapa B), de manera que con una temperatura más elevada del cristal, se selecciona un periodo de calentamiento más corto y con una temperatura más baja del cristal se selecciona un periodo de calentamiento más largo.