Abstract:
A method of producing a rare earth oxysulfide scintillating ceramic body includes heat treatment to form a consolidated body, followed by gas hot isostatic pressing (GHIPing). A powder is first provided having the general formula (M1-xLnx)2O2S, wherein M is a rare earth element, and Ln is at least one element selected from the group consisting of Eu, Ce, Pr, Tb, Yb, Dy, Sm, and Ho, and 1×10-6
Abstract:
A glass-ceramic seal for ionic transport devices such as solid oxide fuel cell stacks or oxygen transport membrane applications. Preferred embodiments of the present invention comprise glass-ceramic sealant material based on a Barium-Aluminum-Silica system, which exhibits a high enough coefficient of thermal expansion to closely match the overall CTE of a SOFC cell/stack (preferably from about 11 to 12.8 ppm/° C.), good sintering behavior, and a very low residual glass phase (which contributes to the stability of the seal).