Abstract:
A method of fabricating a composite rope structure comprising the following steps. Impregnated yarns comprising fibers within a resin matrix are fabricated at a first location. The impregnated yarns are transported from the first location to a second location. The impregnated yarns are dispensed at the second location. The resin matrix of the dispensed impregnated yarns is cured at the second location to obtain the composite rope structure.
Abstract:
A termination assembly for a composite rope structure comprising an end comprises a distal connection member and a proximal connection member. The distal connection member defines a first threaded surface and a working portion, where the working portion is adapted to be connected to a structure. The proximal connection member defines a second threaded surface, an internal surface, and a proximal opening. The first and second threaded surfaces are configured to engage each other to detachably attach the distal connection member and the proximal connection member. The internal surface of the proximal connection member is configured to engage the end of the composite rope structure to secure the composite rope structure relative to the proximal connection member.
Abstract:
A method for non-destructively estimating a current physical condition of a cordage product in-service is described. The method involves obtaining sensor data associated with the cordage product while in-service handling a load. The sensor data includes any combination of cordage product elongation data, applied load data, and diametric data. The method further includes determining an axial stiffness value associated with the cordage product based on the sensor data and estimating a health state of the cordage product based on die determined axial stillness value, The estimated health state is indicative of the current physical condition of the cordage product.
Abstract:
A fiber structure for forming a rope structure has a base matrix of base fiber material and at least one lubricity portion of lubricity material. The lubricity material determines a lubricity of at least a portion of a surface of the fiber structure.
Abstract:
A rope structure or method of forming a rope structure comprises a rope comprising a plurality of strands. The rope comprises first and second splice locations, an eye region between the first and second splice locations, and a main region. The main region of the rope is located adjacent to the first splice location and in an opposite direction along the rope from the eye region. At least one of the strands is a selected strand. An extracted portion of the at least one selected strand is extracted from the rope and inserted into the rope such that a bridge portion of the at least one selected strand extends between the first and second splice locations and a diameter of the rope is substantially consistent in the main region.
Abstract:
A rope structure comprising a plurality of formed composite strands. Each of the formed composite strands comprises fiber material and matrix material. The fiber material within the matrix material is twisted. The shapes of the plurality of formed composite strands are predetermined to facilitate combination of the plurality of composite strands into the rope structure.
Abstract:
A method for non-destructively estimating a current physical condition of a cordage product in-service is described. The method involves obtaining sensor data associated with the cordage product while in-service handling a load. The sensor data includes any combination of cordage product elongation data, applied load data, and diametric data. The method further includes determining an axial stiffness value associated with the cordage product based on the sensor data and estimating a health state of the cordage product based on the determined axial stiffness value. The estimated health state is indicative of the current physical condition of the cordage product.
Abstract:
A termination assembly for a composite rope structure comprising an end comprises a distal connection member and a proximal connection member. The distal connection member defines a first threaded surface and a working portion, where the working portion is adapted to be connected to a structure. The proximal connection member defines a second threaded surface, an internal surface, and a proximal opening. The first and second threaded surfaces are configured to engage each other to detachably attach the distal connection member and the proximal connection member. The internal surface of the proximal connection member is configured to engage the end of the composite rope structure to secure the composite rope structure relative to the proximal connection member.
Abstract:
A rope structure comprising a plurality of formed composite strands. Each of the formed composite strands comprises fiber material and matrix material. The fiber material within the matrix material is twisted. The shapes of the plurality of formed composite strands are predetermined to facilitate combination of the plurality of composite strands into the rope structure.
Abstract:
A method of fabricating a composite rope structure comprising the following steps. Impregnated yarns comprising fibers within a resin matrix are fabricated at a first location. The impregnated yarns are transported from the first location to a second location. The impregnated yarns are dispensed at the second location. The resin matrix of the dispensed impregnated yarns is cured at the second location to obtain the composite rope structure.