Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
Abstract:
Time-series projections can be analyzed and manipulated via an interactive graphical user interface generated by a system. The graphical user interface can include a graph depicting an aggregated time-series projection (ATSP) over a future time. The ATSP can be generated by aggregating multiple time-series. The system can receive user input indicating that an existing value in the ATSP is to be overridden with an override value. In response, the system can adjust the ATSP using the override value to generate an updated version of the ATSP. The system can display the updated version of the ATSP in the graphical user interface. The system can also propagate the impact of overriding the existing value with the override value through the multiple time-series. The system can display an impact analysis portion within the graphical user interface indicating the impact of overriding the existing value with the override value on the multiple time-series.
Abstract:
Time-series projections can be analyzed and manipulated via an interactive graphical user interface generated by a system. The graphical user interface can include a graph depicting an aggregated time-series projection (ATSP) over a future time. The ATSP can be generated by aggregating multiple time-series. The system can receive user input indicating that an existing value in the ATSP is to be overridden with an override value. In response, the system can adjust the ATSP using the override value to generate an updated version of the ATSP. The system can display the updated version of the ATSP in the graphical user interface. The system can also propagate the impact of overriding the existing value with the override value through the multiple time-series. The system can display an impact analysis portion within the graphical user interface indicating the impact of overriding the existing value with the override value on the multiple time-series.
Abstract:
In one example, a computer system can generate a graphical user interface (GUI) for forecasting software including a drag-and-drop canvas with a set of rearrangeable nodes defining a forecasting pipeline. The computer system can detect a user interaction for attaching an external-language execution node to the pipeline, which can be used to insert custom code defined using an external programming language. The computer system can receive the custom code. The computer system can receive a user input to initiate execution of the pipeline. The computer system can generate wrapped custom code by augmenting the custom code with additional program code including shared variables. The computer system can provide the wrapped custom code to a set of execution threads configured to execute the wrapped custom code as part of the pipeline to generate one or more forecasts. The computer system can output the forecasts in the GUI.
Abstract:
In one example, a computer system can generate a graphical user interface (GUI) for forecasting software including a drag-and-drop canvas with a set of rearrangeable nodes defining a forecasting pipeline. The computer system can detect a user interaction for attaching an external-language execution node to the pipeline, which can be used to insert custom code defined using an external programming language. The computer system can receive the custom code. The computer system can receive a user input to initiate execution of the pipeline. The computer system can generate wrapped custom code by augmenting the custom code with additional program code including shared variables. The computer system can provide the wrapped custom code to a set of execution threads configured to execute the wrapped custom code as part of the pipeline to generate one or more forecasts. The computer system can output the forecasts in the GUI.
Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.