Abstract:
Color quantification of chemical test pads and titration of analytes can be performed under different lighting conditions. In one embodiment, the lighting condition is estimated under which a digital image is captured and utilized to select a set of reference colors from which the quantified color is compared to determine the titration. In another embodiment, a plurality of comparisons are made with different lighting conditions with the result having the highest confidence level being selected to determine the titration.
Abstract:
Methods and electronic devices for performing color-based reaction testing of biological materials. The method includes capturing and interpreting digital images of an unexposed and later exposed paddle at various delay times within an automatically calibrated environment. The test paddle includes a unique identification mechanism (UID), a Reference Color Bar (RCB) providing samples of standardized colors for image color calibration, compensation and corrections, and several test-specific sequences of Chemical Test Pads (CTP). The method further includes locating the paddle in the image, extracting the UID and validating the paddle, extracting the RCB and locating the plurality of CTP in each image. The method further reduces image noise in the CTP and calibrates the image automatically according to lighting measurements performed on the RCB. To determine test results, the method further determines several distances between the CTP and its possible trajectory in the color space described by the Manufacturer Interpretation Color Chart.
Abstract:
In a hyperspectral imaging system and method, a pixilated imaging sensor array receives light reflected from, transmitted through, or scattered by a target scene. Images of the target scene are acquired at a number of times and these images are processed to generate hyperspectral data for each pixel of the imaging sensor array based on data for the pixel included in each of the acquired images. This processing can include spatially aligning two or more of the images that were spatially shifted with respect to each other when acquired based on at least one common image feature in the images.
Abstract:
Color quantification of chemical test pads and titration of analytes can be performed under different lighting conditions. In one embodiment, the lighting condition is estimated under which a digital image is captured and utilized to select a set of reference colors from which the quantified color is compared to determine the titration. In another embodiment, a plurality of comparisons are made with different lighting conditions with the result having the highest confidence level being selected to determine the titration.
Abstract:
A hyperspectral imaging system, including: at least one hyperspectral imaging unit, including: at least one lens configured to direct light scattered by, reflected by, or transmitted through a target medium to at least one hyperspectral filter arrangement configured to separate the light into discrete spectral bands; an imaging sensor to: receive the discrete spectral bands from the at least one hyperspectral filter arrangement; detect light by a plurality of pixels for each of the spectral bands; and generate electrical signals based at least in part on at least a portion of the light; and at least one image processor in communication with the at least one imaging sensor and configured to generate hyperspectral image data associated with the target medium; and at least one processor configured to determine biological data based at least partially on at least a portion of the hyperspectral image data.
Abstract:
An automated personal medical diagnostic system and arrangement, including: at least one sensor configured to measure and/or sense at least one physiological condition and generate or acquire sensor data; at least one computing device configured to process at least a portion of the sensor data and generate diagnostic data based at least partially on the sensor data; and at least one user interface configured for user interaction; wherein the diagnostic data at least partially comprises at least one of the following: indicator data, medical diagnostic data, trigger data, or any combination thereof. A method for automated medical diagnosis is also disclosed.
Abstract:
Color quantification of chemical test pads and titration of analytes can be performed under different lighting conditions. In one embodiment, the lighting condition is estimated under which a digital image is captured and utilized to select a set of reference colors from which the quantified color is compared to determine the titration. In another embodiment, a plurality of comparisons are made with different lighting conditions with the result having the highest confidence level being selected to determine the titration.
Abstract:
In a hyperspectral imaging system and method, a pixilated imaging sensor array receives light reflected from, transmitted through, or scattered by a target scene. Images of the target scene are acquired at a number of times and these images are processed to generate hyperspectral data for each pixel of the imaging sensor array based on data for the pixel included in each of the acquired images. This processing can include spatially aligning two or more of the images that were spatially shifted with respect to each other when acquired based on at least one common image feature in the images.
Abstract:
Color quantification of chemical test pads and titration of analytes can be performed under different lighting conditions. In one embodiment, the lighting condition is estimated under which a digital image is captured and utilized to select a set of reference colors from which the quantified color is compared to determine the titration. In another embodiment, a plurality of comparisons are made with different lighting conditions with the result having the highest confidence level being selected to determine the titration.
Abstract:
Methods and electronic devices for performing color-based reaction testing of biological materials. The method includes capturing and interpreting digital images of an unexposed and later exposed paddle at various delay times within an automatically calibrated environment. The test paddle includes a unique identification mechanism (UID), a Reference Color Bar (RCB) providing samples of standardized colors for image color calibration, compensation and corrections, and several test-specific sequences of Chemical Test Pads (CTP). The method further includes locating the paddle in the image, extracting the UID and validating the paddle, extracting the RCB and locating the plurality of CTP in each image. The method further reduces image noise in the CTP and calibrates the image automatically according to lighting measurements performed on the RCB. To determine test results, the method further determines several distances between the CTP and its possible trajectory in the color space described by the Manufacturer Interpretation Color Chart.