Abstract:
A system and method for controlling and analyzing data storage systems, and more particularly, to systems and methods for controlling and analizing performance and physical attributes of a sealed disk drive unit using an externally accessible but internally integral positioning system. A disk drive having a sealed housing utilizes a reflective planar mirror on the rotary actuator controlling the head drive assembly. A narrow beam directed through a window on the side wall of the housing onto the mirror is reflected off at angle dependent on the actuator position to a beam sensitive detector. A translator system driven by a positioner disposed at a distance from the rotary actuator axis which is substantially greater than the distance between the actuator axis and the head assembly, is used to vary the relationship between the directed and reflected beams. This system incorporates the rotary actuator in a closed loop servo that positions the actuator precisely at different locations relative to the recording medium, so that the data may be written and analyzed at off-track track position increments. The invention further provides, at an early or later manufacturing stage, means for calculating bias torque and friction without the need for prerecorded embedded servo information.
Abstract:
A head records a track (e.g. a servo track) in a memory member outside of a clean room without using reference indices. In each of a plurality of cyclical movements (e.g. revolutions), signals (e.g. servo signals) are recorded in the track in an individual number of frames. Thereafter, the distance of the unrecorded portion of the track is determined. In the next cyclical movement, the head records signals in an individual number of frames contiguous to the frames previously recorded, in a track distance dependent upon such individual number relative to the number of frames still unrecorded and upon the distance determined for the unrecorded track portion. In a last cyclical movement, the head records a single frame in a particular spatial relationship with the first and last frames. In a specific embodiment, 2 frames may be recorded in the K cyclical movement. Additional signals may thereafter be recorded by the head in tracks in a single cyclical movement. In another embodiment, each individual number of frames continue to be recorded in the first track in each cyclical movement until the frames occupy a distance, within particular limits, dependent upon the unrecorded length of the track and upon the individual number of frames relative to the number of frames still unrecorded. In a further embodiment, sectors and data sectors following the sectors are recorded with signals in progressive cyclical movements in a manner similar to the recording of the sectors in such revolutions in the first embodiment.