Abstract:
A detection device for detecting a marker in a liquid, preferably a fuel, comprising: a reaction chamber 5, provided with a de-dopable conductive polymer 6 building a path between two conductive pads 10 connected to a resistivity measurement device, wherein the de-dopable conductive polymer 6 is able to be de-doped by a chemical reaction with the marker, changing its resistivity.
Abstract:
Ink-jet print head for an ink-jet printer including at least a substrate and a photopolymer barrier applied onto the substrate. The photopolymer barrier includes an adhesive first layer and a second layer made of a photopolymerizable material and applied above said first layer. The adhesive first layer is made of a canonically polymerizable material partially polymerized that, when contacted by a water-based ink containing acidic species, is able to further polymerize, thus improving the photopolymer barrier adhesion on the surface of the substrate with time.
Abstract:
The present invention relates to an adhesive composition comprising (1) at least one polyol tri(meth)acrylate monomer selected from the group consisting of ditrimethylolpropane triacrylate (DiTMPTTA), tris-(2-hydroxyethyl)-isocyanurate triacrylate (THEICTA), dipentaerythritol triacrylate (DiPETA), ethoxylated trimethylolpropane triacrylate (TMPEOTA), propoxylated trimethylolpropane triacrylate (TMPPOTA), ethoxylated pentaerythritol triacrylate (PETEOIA), propoxylated glyceryl triacrylate (GPTA), pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and modified pentaerythritol triacrylate, triethyleneglycol trimethacrylate (TIEGTMA), tetraethyleneglycol trimethacrylate (TTEGTMA), polyethyleneglycol trimethacrylate hexane trimethacrylate (HTTMA) ethoxylated bisphenol A trimethacrylate, and trimethylolpropane trimethacrylate (TMPTMA), (2) at least one polyalkylene glycol mono(meth)acrylate monomer selected from the group consisting of polypropylene glycol monomethacrylate, polyethylene glycol monomethacrylate, polyethylene glycol-polypropylene glycol monomethacrylate, polypropylene glycol-monoacrylate, polyethylene glycol monoacrylate, polypropylene glycol-polytrimethylene monoacrylate, polyethylene glycol-polytetramethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate, yerfluoroalkylethyl-polyoxyalkylene monomethacrylate, and combinations thereof, and (3) at least one radical initiator selected from the group of initiators sensitive to UV and/or blue radiation (photoinitiator) and thermal initiators (thermoinitiator). The adhesive composition is used for assembling elements made of plastic materials, like PMMA or SAN, or inorganic materials, like glass or metals, employed for manufacturing of devices for the distribution of containment of biological substances.
Abstract:
The present application is related to an active energy ray radically curable inkjet printing ink comprising water, a radically curable di(meth)acrylate monomer, a radically curable (meth)acrylate compound, a photoinitiator of formula (I):
wherein X+ is Na+ or Li+, preferably Na+, and one or more co-initiator.
The application also relates to a printed feature consisting of a cured ink layer, a document comprising said printed feature, a thermal inkjet printhead comprising said ink and a process for printing a feature made of said ink on a substrate.
Abstract:
A detection device for detecting a marker in a liquid, comprising a reaction chamber, provided with a thermosensitive sensor, wherein said reaction chamber comprises an photopolymer capable of releasing or generating a chemical species that is capable of undergoing or initiating an exothermic or endothermic chemical reaction with a marker present in the liquid.
Abstract:
A printing system for printing a security feature in the form of a latent image comprising at least three compositions (RI), (C1) and (C2): (RI) a reactive ink comprising a silane compound (A) comprising at least a first and a second polymerizable moiety which are different from each other and are polymerizable by different mechanisms, loaded in a first reservoir of a first printhead, (C1) a first catalyst composition comprising a substance able to react with the silane compound (A) of composition (RI) and promote the polymerization of the first polymerizable moiety, loaded in a second reservoir of said first printhead or of a second printhead, (C2) a second catalyst composition comprising a substance able to react, alone or in presence of composition (C1), with the silane compound (A) of composition (RI) and promote the polymerization of the second polymerizable moiety.
Abstract:
The present invention relates to adhesive formulations for bonding materials, comprising 40 to 80 wt.-% of an epoxy monomer, and 15 to 30 wt.-% of an oxetane monomer, and 0.1 to 10 wt.-% of an adhesion promotor, and 0.1 to 5 wt.-% of a sensitizer, and 1 to 10 wt.-% of a radiation and temperature activable photoinitiator or a mixture of a photoinitiator and a thermal initiator. Further, the present invention relates to a method for bonding at least two parts of which one is at least an inert material, comprising the steps applying to one part an adhesive formulation as described, placing another part to be bond on the one part, exposing the parts to UV light radiation and heat treating of the part.
Abstract:
The present invention relates to formulations for impregnating a porous sintered material and the use as well as methods for impregnating a porous sintered material. More specifically, the present invention relates to formulations for impregnating a porous sintered material, said formulation comprising 40-90 wt.-% of an acrylic monomer, 0.1-10 wt.-% of a radicalic thermal initiator, 0.1-10 wt.-% of a radicalic photoinitiator, 0-30 wt.-% of an organosilane adhesion promoter and 0-5 wt.-% of a siliconic surfactant. Further the invention relates also to a method for impregnating a porous sintered material, comprising the steps of dipping the porous material into a liquid formulation comprising an acrylic monomer; a radicalic thermal initiator; and a radicalic photoinitiator; vacuum treating of the dipped porous material; removing of excess liquid from the surface of the porous material; exposing of the porous material to light radiation; and heat treating of the porous material.
Abstract:
The present invention relates to a biomedical device for the distribution or containment of biological substances comprising at least two components assembled each other with an adhesive composition comprising a mixture of an acrylic adhesive composition and an epoxy adhesive composition. The present invention also relates to a method for assembling a biomedical device comprising at least two components, comprising (i) forming a film of an adhesive composition comprising a mixture of a (meth)acrylate adhesive composition and an epoxy adhesive composition on at least one surface of said at least two components, (ii) pre-curing said adhesive composition with an UV-blue radiation exposure to substantially cure said (meth)acrylate adhesive composition without substantially curing said epoxy adhesive composition, (iii) contacting said at least one surface of said at least two components to be assembled, and (iv) completing the curing of said adhesive composition with an UV-blue radiation exposure.