Abstract:
This patent application relates generally to an age-based arbitration circuit for use in arbitrating access by a number of data streams to a shared resource managed by a destination (arbiter), in which age-based determinations are performed at the input sources of the data streams in order to designate certain packets as high-priority packets based on packet ages, and the destination expedites processing of the high-priority packets. Among other things, this approach offloads the age-based determinations from the destination, where they otherwise can cause delays in processing packets.
Abstract:
This patent application relates generally to a predictive arbitration circuit for use in arbitrating access by a number of data streams to a shared resource managed by a destination (arbiter), where each data stream is associated with a number of sources competing for the shared resource, and the destination provides access to the shared resource based on the number of sources competing for the shared resource rather than just on the number of data streams. Among other things, this approach can more fairly distribute access to the shared resource among the competing sources.
Abstract:
Processor clock signals are generated for each processor in a HPC system, such that all the processor clock signals are of the same frequency. Furthermore, as part of a startup (boot) procedure, a process sets all time stamp counters (TSCs) of the processors, such they indicate identical times. Each blade of the HPC system recovers a recovered clock signal from a synchronous communication network, to which the blade is coupled. The blade generates a processor clock from the recovered clock signal and provides the processor clock to processor(s) on the blade. Each chassis is coupled to a second, system-wide, synchronous communication network, and each chassis synchronizes its chassis synchronous communication network with the system-wide synchronous communication system. Thus, all the processor clock signals are generated with the same frequency.
Abstract:
An adaptive router anticipates possible future congestion and enables selection of an alternative route before the congestion occurs, thereby avoiding the congestion. The adaptive router may use a primary route until it predicts congestion will occur. The adaptive router measures packet traffic volume, such as flit volume, on a primary network interface to anticipate the congestion. The adaptive router maintains a trailing sum of the number of flits handled by the primary network interface over a trailing time period. If the sum exceeds a threshold value, the adaptive router assumes the route will become congested, and the adaptive router enables considering routing future packets, or at least the current packet, over possible secondary routes.
Abstract:
A modular first-in first-out circuit including at least three non-addressable memory blocks forming a data pipeline is disclosed. At least two of the memory block including a data storage structure for receiving as input data from a global data bus and a control logic structure including logic for determining whether data should be added to the data storage structure from the global data bus and whether any data within the data storage structure should be transferred to the output of the memory block. The data storage structure of the at least two memory blocks includes a first data input for selectively receiving data from the global data bus and a second data input for selectively receiving data from a previous memory block in the modular first-in first-out circuit.
Abstract:
Processor clock signals are generated for each processor in a HPC system, such that all the processor clock signals are of the same frequency. Furthermore, as part of a startup (boot) procedure, a process sets all time stamp counters (TSCs) of the processors, such they indicate identical times. Each blade of the HPC system recovers a recovered clock signal from a synchronous communication network, to which the blade is coupled. The blade generates a processor clock from the recovered clock signal and provides the processor clock to processor(s) on the blade. Each chassis is coupled to a second, system-wide, synchronous communication network, and each chassis synchronizes its chassis synchronous communication network with the system-wide synchronous communication system. Thus, all the processor clock signals are generated with the same frequency.
Abstract:
An associative look-up instruction for an instruction set architecture (ISA) of a processor and methods for use of an associative look-up instruction. The associative look-up instruction of the ISA specifies one or more fields within a data unit that are used as a pattern of bits for identifying data content in a memory structure to be loaded into hardware registers or other storage components of the ISA. Specified parameters of the associative operation may be explicit within the instruction or indirectly pointed to via hardware registers or other storage components of the ISA. The memory structure may be content addressable memory (CAM).
Abstract:
An adaptive router anticipates possible future congestion and enables selection of an alternative route before the congestion occurs, thereby avoiding the congestion. The adaptive router may use a primary route until it predicts congestion will occur. The adaptive router measures packet traffic volume, such as flit volume, on a primary network interface to anticipate the congestion. The adaptive router maintains a trailing sum of the number of flits handled by the primary network interface over a trailing time period. If the sum exceeds a threshold value, the adaptive router assumes the route will become congested, and the adaptive router enables considering routing future packets, or at least the current packet, over possible secondary routes.