Abstract:
There may be included: a demodulation section configured to perform, based on a modulated signal transmitted from an associated communication device, amplitude change demodulation and phase change demodulation, and configured to select a demodulated signal demodulated with either one of the amplitude change demodulation and the phase change demodulation; and a modulation section configured to modulate magnetic field generated by the associated communication device.
Abstract:
There are provided a decoding device and method, a program recording medium, and a program capable of improving the performance of decoding of a modulated code which has been encoded according to a variable length table. A 17PP-SISO decoding section (181) uses the Viterbi decoding algorithm and the BCJR decoding algorithm according to the 17PP encoding table (201) and the trellis expression expressed by a path 1-to-1 corresponding to each state transition of the entire encoding process, thereby SISO-decoding the signal from a PR-SISO decoding section (81) and supplying the SISO-decoded signal to a turbo decoding section (84) via a deinterleaver (83). The turbo decoding section (84) executes turbo decoding processing for the output from the 17PP-SISO decoding section (181). The present invention can be applied to a recording/reproduction device for recording and reproducing a signal onto/from a recording medium such as a high-density optical disc.
Abstract:
THE PRESENT INVENTION RELATES TO A DECODING APPARATUS AND METHOD, A PROGRAM STORAGE MEDIUM, AND A PROGRAM, WHICH ALLOW HIGH-PERFORMANCE DECODING OF A MODULATION CODE ENCODED IN ACCORDANCE WITH A VARIABLE-LENGTH TABLE. A 17PP-SISO DECODER 181 PERFORMS SISO DECODING ON A SIGNAL SUPPLIED FROM A PR-SISO DECODER 81 BY USING A VITERBI DECODING ALGORITHM OR A BCJR DECODING ALGORITHM IN ACCORDANCE WITH A TRELLIS REPRESENTED BY PATHS CORRESPONDING, IN A ONE-TO-ONE FASHION, TO OVERALL TRANSITIONS IN AN ENTIRE ENCODING PROCESS IN ACCORDANCE WITH AN ENCODING TABLE 201 OF A 17PP CODE. A RESULTANT SISO-DECODED SIGNAL IS SUPPLIED TO A TURBO DECODER 84 VIA A DEINTERLEAVER 83. THE TURBO DECODER 84 PERFORMS TURBO DECODING ON THE SIGNAL OUTPUT FROM THE 17PP-SISO DECODER 181. THE PRESENT INVENTION CAN BE APPLIED TO A RECORDING/REPRODUCING APPARATUS FOR RECORDING/REPRODUCING A SIGNAL ON/FROM A STORAGE MEDIUM SUCH AS A HIGH-DENSITY OPTICAL DISK.
Abstract:
An acoustic signal reproducing apparatus for reproducing acoustic signals by headphone devices (2) is disclosed. The left channel and right channel acoustic signals are provided by a device (23) for processing the acoustic signals with constant transmission characteristics from an imaginary sound source to both of the listener's ears. The left channel and right channel acoustic signals, processed in this manner by the device (23), are provided by an acoustic signal processing device (21) with a level difference and time difference consistent with changes in orientation of the listener's head (M).
Abstract:
A sound reproducing apparatus comprises an acoustic tube (1) having substantially the same inside diameter as that of an external acoustic meatus, and a loudspeaker unit (2) mounted to said acoustic tube so that the sound radiating surface thereof is directed to one side of said acoustic tube (1), said acoustic tube (1) having its one end formed as an auricular attachment section and having its other end formed as a non-sound-reflecting end. The acoustic tube (1) has an acoustic impedance approximately equal to the acoustic impedance of the external acoustic meatus. The remote end of the acoustic tube is open. Signal processing circuitry is provided to alter the acoustic field as perceived by the wearer.
Abstract:
In the audio signal reproducing apparatus, information on the transfer characteristics representative of the transfer characteristics from virtual sound sources to both ears of a listener in at least a first quadrant of the rotational angular position of the head M of the listener is stored in storing means 22. The transfer characteristics in rotational angular position of the head M represented by detection outputs from detecting means 5L, 5R and 13 for detecting the rotational angle position depending upon the movement of the head of the listener are formed based upon the transfer characteristics information of at least the first quadrant stored in the storing means and left and right channel audio signals are processed by audio signal processing means 23 for achieving a proper binaural reproduction relative to the virtual sound sources. Also in the audio signal processing apparatus of the present invention, information on the transfer characteristics from virtual sound sources to both ears of a listener for each given rotational angle depending upon the movement of the head M of the listener is stored in storing means 62. The rotational angular position of the head of the listener is detected by detecting means 45L, 45R and 53 at a solution higher than that of the information of the transfer characteristics stored in said storing means. The information on at least two transfer characteristics in the vicinity of the rotational angular position represented by the detection outputs from detecting means is read from the storing means. The information on the transfer characteristics in the rotational angular position of the head represented by the detection output is interpolation operated by interpolation operating means 61. Based upon the information on the transfer characteristics determined by the interpolation operation means, left and right channel audio signals are processed by audio signal processing means 63 for achieving a proper binaural reproduction relative to the virtual sound sources.
Abstract:
There are provided a decoding device, a decoding method, and a program for realizing decoding of the LDPC code capable of suppressing the circuit size, suppressing the operation frequency to a sufficiently realizable range, and easily controlling memory access. The inspection matrix of the LDPC code is composed of a combination of a unit matrix p × p, the unit matrix in which one or more 1 have become 0, their cyclic shifts, a sum of them, and a 0 matrix of p × p. A check node calculation section (313) simultaneously performs P check node calculations while a variable node calculation section (319) simultaneously performs P variable node calculations.
Abstract:
There are provided a decoding method, a decoding device, and a program capable of suppressing the operation frequency to a range capable of sufficient realization of it and easily performing control of memory access while suppressing the circuit size. LDPC (Low Density Parity Check) code is decoded by using a conversion inspection matrix obtained one or both of the row replacement and the column replacement for the inspection matrix of elements of the LDPC code. In this case, the conversion inspection matrix can be expressed by a combination of a plurality of constituting matrixes such as a unit matrix of P × P, a quasi-unit matrix in which one or more components 1 of the unit matrix have become 0, a shift matrix in which a unit matrix or a quasi-unit matrix is cyclically shifted, a sum matrix which is a sum of at least two of the unit matrix, the quasi-unit matrix, and the shift matrix, or 0 matrix of P × P. A check node calculation section (302) simultaneously performs calculation of P check nodes while a variable node calculation section (304) simultaneously performs calculation of P variable nodes.
Abstract:
Un aparato de decodificación (400) para decodificar un Código de Control de Paridad de Baja Densidad LDPCadaptado para poner en práctica una propagación de creencia sobre una representación de gráfico de Tanner del códigoLDPC, en donde la matriz de control de paridad, correspondiente al gráfico de Tanner de dicho código LDPC, estáconstituida por una combinación de una pluralidad de sub-matrices P x Pen donde cada sub-matriz es una matriz unitaria P x P; una matriz cuasi-unitaria en donde uno o varios `1', que sonelementos de la matriz unitaria P x P se sustituyen por 0; una matriz de desplazamiento en donde dicha matriz unitaria odicha matriz cuasi-unitaria está desplazada de forma cíclica; una matriz suma P x P, que es la suma de dos o más dedicha matriz unitaria P x P, de dicha matriz cuasi-unitaria y de dicha matriz de desplazamiento, en donde dicha matrizsuma P x P tiene un peso de ponderación de línea o de columna de dos o más; o una matriz nula P x P y dichacombinación comprende matrices suma P x P, comprendiendo dicho aparato de decodificación: un segundo medio de cálculo (415) adaptado para realizar simultáneamente una primea parte de P cálculos de nodos devariables para obtener P segundos resultados de decodificación en curso v (D415) según la ecuaciónen donde u0 representa un valor inicial para un mensaje recibido a decodificarse y representa un valor integradoen donde un primer resultado de decodificación en curso uj previamente obtenido por un primer medio de cálculo (412) ymemorizado en una primera memoria (413) se suma en todos los dv bordes conectados a un nodo de variable;una segunda memoria (410) adaptada para memorizar los P segundos resultados de decodificación en curso v a partirdel segundo medio de cálculo en una misma dirección; un primer medio de cálculo (412), adaptado para realizar simultáneamente una segunda parte de los P cálculos de nodosde variables según la ecuación vi >= v - udv, en donde udv es un primer resultado de decodificación en curso obtenidoanteriormente correspondiente al borde para el que debe determinarse el mensaje de borde vi y para realizarsimultáneamente P cálculos de nodos de control utilizando los valores de mensaje de borde para vi para obtener los Pprimeros resultados de decodificación en curso ui (D412) y la primera memoria (413) adaptada para memorizar los P primeros resultados de decodificación en curso ui procedentesdel primer medio de cálculo en una misma dirección; en donde la primera memoria está, además, adaptada para memorizar, en una misma dirección, para una matriz sumacuyo peso de ponderación de línea o de columna es dos o más, los primeros resultados de decodificación en cursocorrespondientes a los P bordes que pertenecen a la matriz unitaria, a la matriz cuasi-unitaria o a la matriz dedesplazamiento incluida en la suma para formar dicha matriz suma, cuyo peso de ponderación de línea o de columna esdos o más.