Abstract:
This invention is directed to an apparatus and method for producing microparticles comprising pharmacologically active agents and biodegradable polymers. The apparatus (100) includes a spinning disk (105) containing a reservoir (708) in the center thereof and a flat inclined surface. The apparatus optionally includes serrations (712) and/or a flat surface beneath the periphery of the disk that is parallel to the rotational axis of the disk. The invention is also directed to a method for producing microparticles containing pharmacologically active agents, using the spinning disk apparatus. Formulations containing ophthalmically active agents are provided. Formulations exhibiting zero order release rates are also described.
Abstract:
A composite for retarding microbiological contamination containing a hydrophobic material containing an acid releasing agent, and a hydrophilic material containing anions that are capable of reacting with hydronium ions to generate gas. The hydrophilic and hydrophobic materials are adjacent and substantially free of water, and the hydrophilic material is capable of generating and releasing the gas after hydrolysis of the acid releasing agent.
Abstract:
A composite for retarding microbiological contamination containing a hydrophobic material containing an acid releasing agent, and a hydrophilic material containing anions that are capable of reacting with hydronium ions to generate a gas. The hydrophilic and hydrophobic materials are adjacent and substantially free of water, and the hydrophilic material is capable of generating and releasing the gas after hydrolysis of the acid releasing agent.
Abstract:
A biocidal powder for sustained release of chlorine dioxide includes particles containing chlorite anions, and a hydrophobic core having the particles on a surface thereof, the hydrophobic core containing an acid releasing agent. The particles and the hydrophobic core are substantially free of water, and the particles are capable of releasing chlorine dioxide upon hydrolysis of the acid releasing agent.
Abstract:
A biocidal powder for sustained release of chlorine dioxide includes particles containing chlorite anions, and a hydrophobic core having the particles on a surface thereof, the hydrophobic core containing an acid releasing agent. The particles and the hydrophobic core are substantially free of water, and the particles are capable of releasing chlorine dioxide upon hydrolysis of the acid releasing agent.
Abstract:
A composite for retarding microbiological contamination containing a hydrophobic material containing an acid releasing agent, and a hydrophilic material containing anions that are capable of reacting with hydronium ions to generate a gas. The hydrophilic and hydrophobic materials are adjacent and substantially free of water, and the hydrophilic material is capable of generating and releasing the gas after hydrolysis of the acid releasing agent.
Abstract:
A composite for retarding microbiological contamination containing a hydrophobic material containing an acid releasing agent, and a hydrophilic material containing anions that are capable of reacting with hydronium ions to generate a gas. The hydrophilic and hydrophobic materials are adjacent and substantially free of water, and the hydrophilic material is capable of generating and releasing the gas after hydrolysis of the acid releasing agent.
Abstract:
A biocidal powder for sustained release of chlorine dioxide includes particles containing chlorite anions, and a hydrophobic core having the particles on a surface thereof, the hydrophobic core containing an acid releasing agent. The particles and the hydrophobic core are substantially free of water, and the particles are capable of releasing chlorine dioxide upon hydrolysis of the acid releasing agent.
Abstract:
A biocidal powder for sustained release of chlorine dioxide includes particles containing chlorite anions, and a hydrophobic core having the particles on a surface thereof, the hydrophobic core containing an acid releasing agent. The particles and the hydrophobic core are substantially free of water, and the particles are capable of releasing chlorine dioxide upon hydrolysis of the acid releasing agent.