Abstract:
A microprocessing module (100) is powered by radio-nuclide voltaic-junction batteries (114). The microelectronics circuitry (104) includes a clock circuit unit (120), a central processing unit with an arithmetic logic unit (122), a read only memory (124), and a random access memory (126). The input/output circuitry includes a serial input/output interface (128), a parallel input/output interface (130), and a priority interrupt controller (132). The microprocessor module (100) also has a control bus (108) and a data bus (106).
Abstract:
The present invention provides a microarray having a plurality of micro-locations for confining selected photophores, for example, biological molecules exhibiting fluorescence spectra. The microarray can further include an array of optoelectronic photodetectors each of which is optically coupled with at least one of the micro-locations to detect radiation, for example, fluorescence radiation, that is emitted from the photophores confined in that micro-location. Each photodetector includes a resonant cavity that is formed of a front reflector and/or a back reflector having distributed Bragg reflector structures and a photo-detecting element disposed in the resonant cavity. The microarray can utilize either external optical excitation sources, such as lasers, LEDs, or can contain its own excitation sources in an integrated structure containing both optical radiation emitters, such as, vertical cavity surface emitting lasers or resonant cavity LEDs, and resonant cavity photodetectors. The integrated emitters and detectors can be either coaxially or adjacently located. Further, the microarray can include either separate sample array and excitation/detector array plates, or a single sample/excitation/detector array plate in which the photophore-containing sample molecules can be deposited directly on the excitation/detector array.
Abstract:
The present invention provides substrates having a plurality of micro-locations on its surface. Each micro-location has an effective dose of an ion beam treatment such that the plurality of the micro-locations exhibit an affinity to a compound that is different from the affinity of the remainder of the substrate surface to that compound. The substrates of the invention can be utilized to form microarrays of biological molecules, such as oligonucleotides or peptides. Such microarrays can find a variety of applications. For example, they can be employed in large scale hybridization assays in many genetic applications, such as mapping of genomes, monitoring of gene expression, DNA sequencing, genetic diagnosis, and genotyping of organisms.
Abstract:
The present invention provides a microarray having a plurality of micro-locations for confining selected photophores, for example, biological molecules exhibiting fluorescence spectra. The microarray can further include an array of optoelectronic photodetectors each of which is optically coupled with at least one of the micro-locations to detect radiation, for example, fluorescence radiation, that is emitted from the photophores confined in that micro-location. Each photodetector includes a resonant cavity that is formed of a front reflector and/or a back reflector having distributed Bragg reflector structures and a photo-detecting element disposed in the resonant cavity. The microarray can utilize either external optical excitation sources, such as lasers, LEDs, or can contain its own excitation sources in an integrated structure containing both optical radiation emitters, such as, vertical cavity surface emitting lasers or resonant cavity LEDs, and resonant cavity photodetectors. The integrated emitters and detectors can be either coaxially or adjacently located. Further, the microarray can include either separate sample array and excitation/detector array plates, or a single sample/excitation/detector array plate in which the photophore-containing sample molecules can be deposited directly on the excitation/detector array.
Abstract:
The present invention provides substrates having a plurality of micro-locations on its surface. Each micro-location has an effective dose of an ion beam treatment such that the plurality of the micro-locations exhibit an affinity to a compound that is different from the affinity of the remainder of the substrate surface to that compound. The substrates of the invention can be utilized to form microarrays of biological molecules, such as oligonucleotides or peptides. Such microarrays can find a variety of applications. For example, they can be employed in large scale hybridization assays in many genetic applications, such as mapping of genomes, monitoring of gene expression, DNA sequencing, genetic diagnosis, and genotyping of organisms.