Abstract:
A method to simultaneously detect emission intensity or images at multiple distinct emission wavelengths in the analysis of parallel sample streams in a flow-based analysis system and apparatus for performing the described method.
Abstract:
An affordable flow cytometry system with a significantly increased analytical rate, volumetric sample delivery and usable particle size including a light beam that interrogates multiple flow streams so as to provide excitation across all of the streams, and an optical objective configured to collect light from the sample streams and image the light onto an array detector.
Abstract:
An affordable flow cytometry system with a significantly increased analytical rate, volumetric sample delivery and usable particle size including a light beam that interrogates multiple flow streams so as to provide excitation across all of the streams, and an optical objective configured to collect light from the sample streams and image the light onto an array detector.
Abstract:
This disclosure describes a structured polynucleotide, devices that include the structured polynucleotide, and methods involving the structured polynucleotide and/or devices. Generally, the structured polynucleotide includes five domains. A first domain acts as a toehold for an input DNA logic gate to initiate binding to an SCS biomolecule. A second domain acts as a substrate recognition sequence for an upstream DNA logic gate. A third domain acts as a toehold for a output DNA logic gate to initiate binding of the SCS biomolecule to the gate. A fourth domain acts as an effector sequence to alter the state of the output logic gate. A fifth domain acts as a cage sequence to lock the effector sequence in an inactive state until an input gate binds to the structured polynucleotide.