Abstract:
A method for forming a semiconductor structure, includes: providing a host substrate; forming at least one sacrificial layer having two or more group-V species over the host substrate; forming at least one semiconductor layer over the at least one sacrificial layer; and transferring at least a portion of the at least one semiconductor layer from the host substrate onto an alternate substrate.
Abstract:
A tunable laser device includes a laser structure and a plurality of individually addressable, separated contact stripes disposed on the laser structure. The laser structure includes a substrate, an active portion disposed on the substrate, and a chirped distributed feedback (DFB) grating disposed on the active portion. The active portion includes at least top and bottom contact layers and a gain medium.
Abstract:
A technique for classifying lesions as malignant or benign is disclosed. The technique can include: cooling an area of skin including a lesion of a patient to initiate a warm-up process; receiving a temporal sequence of thermal images of the area of skin representing a thermal recovery of the area of skin, the temporal sequence of thermal images generated by an infrared camera; generating a temporal profile of the thermal recovery based on the temporal sequence of thermal images; analyzing temporal statistical properties of the temporal profile; determining a malignancy probability that the lesion is malignant based on an analysis of the temporal profile, wherein the determining includes extracting one or more statistical features based on continuous- time stochastic signals in the sequence of thermal images; and classifying the lesion based on the malignancy probability.
Abstract:
A plasmonic detector is described which can resonantly enhance the performance of infrared detectors. More specifically, the disclosure is directed to enhancing the quantum efficiency of semiconductor infrared detectors by increasing coupling to the incident radiation field as a result of resonant coupling to surface plasma waves supported by the metal/semiconductor interface, without impacting the dark current of the device, resulting in an improved detectivity over the surface plasma wave spectral bandwidth.