METHOD FOR BOOSTING VISCOSITY OF A FRACTURING FLUID

    公开(公告)号:WO2022026090A1

    公开(公告)日:2022-02-03

    申请号:PCT/US2021/038862

    申请日:2021-06-24

    Applicant: STEPAN COMPANY

    Abstract: A hydraulic fracturing method is disclosed. A small proportion of a nonionic surfactant is used in combination with an acrylamide polymer emulsion friction reducer, the proppant, and the base water to boost the viscosity of the fracturing fluid. The nonionic surfactant has a calculated HLB within the range of 10 to 17. The nonionic surfactants include selected aralkylated phenol ethoxylates, amine or amidoamine ethoxylates, mixed EO/PO alcohol alkoxylates, ethoxylated alcohols, ethoxylated amides, and alkylphenol ethoxylates. The nonionic surfactant boosts the viscosity of the fracturing fluid, promotes proppant transfer, and enables more-efficient hydrocarbon production.

    FRICTION REDUCER FOR HYDRAULIC FRACTURING
    2.
    发明申请

    公开(公告)号:WO2019046198A1

    公开(公告)日:2019-03-07

    申请号:PCT/US2018/048160

    申请日:2018-08-27

    Applicant: STEPAN COMPANY

    Abstract: Compositions comprising an acrylamide polymer emulsion and a nonionic surfactant suitable for use as friction reducers for hydraulic fracturing are disclosed. The nonionic surfactants include aralkylated phenol ethoxylates, amine ethoxylates, amidoamine ethoxylates, linear or branched alcohol EO/PO alkoxylates, ethoxylated alcohols, alkylphenol ethoxylates, and EO-capped poly(oxypropylene) block copolymers. Improved hydraulic fracturing processes in which an acrylamide polymer emulsion is used as a friction reducer are also described. In these processes, the surfactant is included in the composition with the acrylamide polymer friction reducer, or it is introduced separately into the process. The performance of low-cost polyacrylamide friction reducers can be boosted with a small proportion of certain readily available nonionic surfactants. The inventive compositions are effective in high-salinity environments, and their performance can sometimes exceed that of more-expensive salt-tolerant friction reducers, thereby reducing fresh water demand and enabling greater utilization of produced water.

Patent Agency Ranking