Abstract:
A device for detecting obstacles (10) that is wearable by a subject (18) on a foot (19), in particular integrated in an item of footwear (30) that is wearable by the subject (18), the aforesaid device (10) comprising at least one ultrasound source (12T) for emitting an ultrasound transmission signal (UT) and an ultrasound receiver (12T) for receiving a corresponding ultrasound signal (UR) reflected by an obstacle (16), a control module (11) for measuring a time of flight (At) between emission of the ultrasound transmission signal (UT) and reception of the corresponding ultrasound signal (UR) reflected by the obstacle (16) and calculating, on the basis of the aforesaid time of flight (Δt), the distance (d) at which the obstacle (16) is located. The device comprises an inertial sensor (13), in particular an acceleration sensor, designed to measure acceleration of the foot (19) along three axes (x, y, z), and a control module (11) configured for enabling operation of the ultrasound source (12T) if the aforesaid acceleration values measured by the inertial sensor (13) respect a given condition (Cen) for enabling measurement of the time of flight (Δt).
Abstract:
A method of detecting objects, e.g. by means of piezoelectric transducers, includes transmitting acoustic signals (TW) including sets of pulses towards an object (0) to induce echo signals (EW) resulting from reflection of the acoustic signals at the object, wherein the time delay of the echo signals is indicative of the distance (D) to the object. The method includes transmitting a first acoustic signal including a first set of pulses including a first number of pulses, and checking if a first echo signal resulting from reflection of the first acoustic signal is received with an intensity reaching an echo detection threshold. If the intensity of the first echo signal reaches the echo detection threshold, the distance to the object is calculated as a function of the time delay of the first echo signal. If the intensity of the first echo signal fails to reach the echo detection threshold, one or more further acoustic signals are transmitted including a set of pulses wherein the number of pulses is increased with respect to the number of pulses in said first acoustic signal.
Abstract:
A device for detecting obstacles that is wearable by a subject, for example integrated in an item of footwear. The device includes an ultrasound source for emitting an ultrasound transmission signal and an ultrasound receiver for receiving a corresponding ultrasound signal reflected by an obstacle, a control module for measuring a time of flight between emission of the ultrasound transmission signal and reception of the corresponding ultrasound signal reflected by the obstacle and calculating, on the basis of the aforesaid time of flight, the distance at which the obstacle is located. The device comprises an inertial sensor, in particular an acceleration sensor, designed to measure acceleration of the foot along three axes, and a control module configured for enabling operation of the ultrasound source if the aforesaid acceleration values measured by the inertial sensor respect a given condition for enabling measurement of the time of flight.