Abstract:
A method of storing a picture in a memory such that bandwidth can be reduced when retrieving an array portion of the picture from the memory, and a memory architecture are disclosed. The memory is subdivided into a plurality of words for storing a picture having rows and columns. The picture is partitioned into two or more stripes each having a predetermined number of columns. The number of bytes in one row of one stripe is equal to the number of bytes in one word, for storing the data in one row of a stripe in one word.
Abstract:
A method of storing a picture in a memory such that bandwidth can be reduced when retrieving an array portion of the picture from the memory, and a memory architecture are disclosed. The memory is subdivided into a plurality of words for storing a picture having rows and columns. The picture is partitioned into two or more stripes each having a predetermined number of columns. The number of bytes in one row of one stripe is equal to the number of bytes in one word, for storing the data in one row of a stripe in one word.
Abstract:
A method of storing a picture in a memory such that bandwidth can be reduced when retrieving an array portion of the picture from the memory, and a memory architecture are disclosed. The memory is subdivided into a plurality of words for storing a picture having rows and columns. The picture is partitioned into two or more stripes each having a predetermined number of columns. The number of bytes in one row of one stripe is equal to the number of bytes in one word, for storing the data in one row of a stripe in one word.
Abstract:
Circuits and methods for subdividing a decoder into functional blocks that can be accessed separately. The decoder includes a decoder module having a parser, a block decoder and a motion compensation engine, which can all be further subdivided into functional blocks. The functional blocks can be bypassed in decompressing frames where the blocks are not necessary, or when the compression algorithm does not require the functional block, increasing the speed of the decoder. The functional blocks can also be reused for decompression or compression based on different standards, or for different operation in the decoder, such as decompression and compression. The decoder can be coupled to a processor and some of the functional block performed in the decoder's hardware and some are performed in the processor. In one embodiment of the invention and the processor determines which block are to be by-passed completely and which block are to be performed in software based on the decompression protocol to which the compressed frame is encoded to comply to, the capacity and speed of the processor, and the available memory. In another embodiment multiplexers can be added to the decoder to connect functional blocks so they can be by-passed or reused based on preprogramming of the multiplexers based on the decompression protocol to which the compressed frame is encoded to comply to, the capacity and speed of the processor, and the available memory.
Abstract:
A method of storing a picture in a memory such that bandwidth can be reduced when retrieving an array portion of the picture from the memory, and a memory architecture are disclosed. The memory is subdivided into a plurality of words for storing a picture having rows and columns. The picture is partitioned into two or more stripes each having a predetermined number of columns. The number of bytes in one row of one stripe is equal to the number of bytes in one word, for storing the data in one row of a stripe in one word.
Abstract:
A method of reducing the memory required for decompression of a compressed frame by storing frame in a compressed format using DCT based techniques and decoders for implementing such a method are disclosed. The decoder is coupled to a memory where the frame can be stored. The decoder includes a decoder module having a parser, a block decoder module and a motion compensation engine. The decoder module is coupled to a DCT encoder module, which has an output coupled to the memory. The decoder also includes a stored DCT decoder module, which has an input coupled to the memory, a first output coupled to the motion compensation module and a second output that functions as an output of the decoder.