Abstract:
A circuit for generating an output voltage which is proportional to temperature with a required gradient is disclosed. The circuit relies on the principle that the difference in the base emitter voltage of two bipolar transistors with differing areas, if appropriately connected, can result in a current which has a positive temperature coefficient, that is a current which varies linearly with temperature such that as the temperature increases the current increases. It is important to maintain a stable internal line voltage in the face of significant variations in a supply voltage to the circuit. This is achieved herein by providing control elements appropriately connected to a differential amplifier. The stable internal supply voltage can be used to power a subsequent stage of the circuit for fine control of the gradient of the voltage proportional to temperature.
Abstract:
A circuit for generating an output voltage proportional to temperature with a required gradient, the circuit comprising a first stage arranged to generate a first voltage which is proportional to temperature with a predetermined gradient but which has a positive value when the temperature falls below zero and a second stage connected to the first stage and comprising a differential amplifier having a first input connected to receive the first voltage and a second input connected to receive a feedback voltage which is derived from an output signal of the differential amplifier via an offset circuit which introduces an offset voltage such that the output signal of the differential amplifier provides at an output node said output voltage which has a negative variation with negative temperatures.
Abstract:
A circuit for generating an output voltage proportional to temperature with a required gradient, the circuit comprising a first stage arranged to generate a first voltage which is proportional to temperature with a predetermined gradient, the first stage comprising first and second bipolar transistors with different emitter areas having their emitters connected together and their bases connected across a bridge resistive element, wherein the collectors of the transistors are connected to an internal supply line via respective matched resistive elements such that the voltage across the bridge resistive element is proportional to temperature; a differential amplifier having its inputs connected respectively to said collectors, and its output connected to stabilisation circuitry connected between first and second power supply rails and an internal supply line which cooperates with the differential amplifier to maintain a stable voltage on the internal supply line despite variations between the first and second power supply rails; and a second stage which comprises a gain circuit connected to receive the first voltage for altering the predetermined gradient to match the required gradient, the gain circuit having as its voltage supply said stable voltage on the internal supply line.