Abstract:
There is described a device for the correction of the power factor in forced switching power supplies. The device comprises a converter (20) and a control device (100) coupled with the converter (20) in order to obtain from an alternated mains input voltage (Vin) a regulated voltage (Vout) on the output terminal; the converter (20) comprises a power transistor (M) and said control device (100) comprises an error amplifier (3) having in input on the inverting terminal a signal (Vr) proportional to the regulated voltage (Vout) and on the non-inverting terminal a reference voltage (Vref). The signal (Vr) proportional to the regulated voltage is produced by a first resistance (R1) and a second resistance (R2) coupled in series to which is applied said regulated voltage (Vout); a terminal of the second resistance (R2) is connected with the inverting terminal of the error amplifier (3). The device for the correction of the power factor comprises first means (D50) positioned between the first resistance (RI) and the inverting terminal of the error amplifier (3) and second means (50) suitable for detecting the electrical connection of the first means (D50) with the output terminal of said device for the correction of the power factor and suitable for detecting an output signal (Vr2) of the second resistance (R2). The second means (50) are suitable for supplying a malfunction signal (Fault) of the device for the correction of the power factor when the second means (50) detect electric disconnection of the first means (D50) from said output terminal (Out) or when the output signal (Vr2) of the second resistance (R2) tends to zero.
Abstract:
The present invention refers to switching power supplies and in particular to a circuit for reducing the variations of auto-supply voltage of a control circuit of a switching power supply. In an embodiment thereof the circuit for reducing the variations of the auto-supply voltage (Vcc) of a control circuit (12) of a switching power supply where said control circuit (12) supplies an activation or deactivation signal of a power transistor comprises: a generator (Wa) of said auto-supply voltage (Vcc); characterized in that it comprises a controlled switch (T) capable of selectively connecting said generator (Wa) to said control circuit (12); and a driving circuit (SW2) of said controlled switch (T) that supplies a closing signal of said controlled switch (T) after a predefined delay of time (Td) starting from said deactivation command.
Abstract:
A power factor correction device for switching power supplies is described, which comprises a converter (20) and a control device (100;200;300) coupled with said converter (20) in such a way as to obtain from a input network alternated voltage (Vin) a direct regulated voltage (Vout) at the output terminal. The converter (20) comprises a power transistor (M) and the control device (100;200;300) comprises an error amplifier (3) having in input at the inverting terminal a first signal (Vr) proportional to said regulated voltage (Vout) at at the non-inverting terminal a voltage reference (Vref), at least one capacitor (C) having a first terminal and a second terminal which are coupled respectively with the inverting terminal and the output terminal (31) of the error amplifier (3) and a driving circuit (4-6) of said power transistor (M) which is coupled with the second terminal of said capacitor (C). The control device (100;200;300) comprises interruption means (SW)placed between the output terminal (31) of said error amplifier (3) and said driving circuit (4-6) for at least one time period (T) lower than the time period (Tciclo) in which said control device (100; 200; 300) is operative.
Abstract:
The present invention refers to a starting circuit for switching power supplies (SMPS), to a switching power supply comprising a starting circuit )and an integrated circuit of a switching power supply. In an embodiment thereof the starting circuit (13) for switching power supplies having a first supply voltage (Vin) coming from a first terminal and a second supply voltage (Vcc) coming from a second terminal and a third tenninal (30); said starting circuit comprises: a first current path between said first terminal and said third terminal (30); a second current path between said first tenninal and said second terminal; a third current path between said second terminal and said third terminal (30); a two-way voltage regulator (M3, Dz2, R5, R6) placed along said second current path.
Abstract:
A power factor correction device for switching power supplies is described, which comprises a converter (20) and a control device (100;200;300) coupled with said converter (20) in such a way as to obtain from a input network alternated voltage (Vin) a direct regulated voltage (Vout) at the output terminal. The converter (20) comprises a power transistor (M) and the control device (100;200;300) comprises an error amplifier (3) having in input at the inverting terminal a first signal (Vr) proportional to said regulated voltage (Vout) at at the non-inverting terminal a voltage reference (Vref), at least one capacitor (C) having a first terminal and a second terminal which are coupled respectively with the inverting terminal and the output terminal (31) of the error amplifier (3) and a driving circuit (4-6) of said power transistor (M) which is coupled with the second terminal of said capacitor (C). The control device (100;200;300) comprises interruption means (SW)placed between the output terminal (31) of said error amplifier (3) and said driving circuit (4-6) for at least one time period (T) lower than the time period (Tciclo) in which said control device (100; 200; 300) is operative.
Abstract:
The present invention refers to a starting circuit for switching power supplies (SMPS), to a switching power supply comprising a starting circuit )and an integrated circuit of a switching power supply. In an embodiment thereof the starting circuit (13) for switching power supplies having a first supply voltage (Vin) coming from a first terminal and a second supply voltage (Vcc) coming from a second terminal and a third tenninal (30); said starting circuit comprises: a first current path between said first terminal and said third terminal (30); a second current path between said first tenninal and said second terminal; a third current path between said second terminal and said third terminal (30); a two-way voltage regulator (M3, Dz2, R5, R6) placed along said second current path.
Abstract:
The present invention refers to a starting circuit for switching power supplies (SMPS), to a switching power supply comprising a starting circuit )and an integrated circuit of a switching power supply. In an embodiment thereof the starting circuit (13) for switching power supplies having a first supply voltage (Vin) coming from a first terminal and a second supply voltage (Vcc) coming from a second terminal and a third tenninal (30); said starting circuit comprises: a first current path between said first terminal and said third terminal (30); a second current path between said first tenninal and said second terminal; a third current path between said second terminal and said third terminal (30); a two-way voltage regulator (M3, Dz2, R5, R6) placed along said second current path.
Abstract:
Herein described is a control device of a device for the correction of the power factor in forced switching power supplies; said device for the correction of the power factor comprises a converter (20) and said control device (1) is coupled to the converter to obtain from an alternating input line voltage (Vin) a regulated output voltage (Vout) . The control device (1) comprises generating means (421-423) associated to a capacitor (Cf f) for generating a signal (Vff) representative of the root-mean- square value of the alternating line voltage; the generating means (421-424) are associated to means for discharging (Rf f) said capacitor. The control device comprises further means for discharging (Ml, COMPl, Cl; Ml 6, COMPI 1, CI 1; M50, COMP22, C0MP33, Cint) the capacitor (Cf f) suitable for discharging said capacitor when the signal (Vff) representative of the root-mean- square value of the alternating line voltage goes below a given value (VCl, VCI 1, Vint) .