Abstract:
A transmission channel (1) is described comprising at least one high voltage buffer block (4) comprising buffer transistors (MB1, MB2, MB3, MB4) and respective buffer diodes (DB1, DB2, DB3, DB4), being inserted between respective voltage references (HVP0, HVP1, HVM0, HVM1), a clamping circuit (10) being connected to a first output terminal (HVout) of the transmission channel (1), an antinoise block (6) being connected between the first output terminal (HVout) and a connection terminal (Xdcr) of the transmission channel (1); as well as a switching circuit (30) being inserted between the connection terminal (Xdcr) and a second output terminal (LVout) of the transmission channel (1). Advantageously according to the invention, the clamping circuit (10) comprises a clamping core (11), a reset circuit (20) comprising diodes (DME1, DME2, DME3, DME4 ) inserted between circuit nodes (XME1, XME2, XME3, XME4, XC1, XC2) of the high voltage buffer block (4) and of the clamping circuit (10), the circuit nodes (XME1, XME2, XME3, XME4, XC1, XC2 ) being in correspondance with conduction terminals of said transistors (MB1,MB2,MB3,MB4,MC1,MC2) comprised into the high voltage buffer block(4) and into the clamping circuit (10), and a switching circuit (30).
Abstract:
A switching circuit (30) is described being inserted between a connection terminal (Xdcr) and an output terminal (LVout) of a transmission channel (1) and of the type comprising at least one first and one second switching transistor (MSW1, MSW2) which are high voltage MOS transistors of complementary type inserted, in series to each other and by having respective equivalent or body diodes (DSW1, DSW2) in anti-series, between the connection terminal (Xdcr) and the output terminal (LVout). Advantageously according to the invention, the switching circuit comprises at least one bootstrap circuit (31) connected to respective first and second control terminals (XG1, XG2) of these at least one first and one second switching transistor (MSW1, MSW2), as well as to respective first and second voltage references (VDD_P, VDD_M) and having values of parasite capacities between these first and second control terminals (XG1, XG2) and at least one first and one second bootstrap node (XB1, XB2) of at least one order of magnitude lower with respect to the gate-source capacities (Csw1, Csw2) of these at least one first and one second switching transistor (MSW1, MSW2).
Abstract:
A switching circuit (10) for an ultrasound transmission channel (1) is inserted between a connection terminal (Xdcr) and a low voltage output terminal (LVout) and comprising a receiving switch (30) a high voltage clamp circuit (HV1) inserted between the connection terminal (Xdcr) and a central node (Vc), a low voltage clamping switch (25) inserted between said central node (Vc) and a reference voltage (GND), the receiving switch (30) being low voltage and being inserted between the central node (Vc) and the low voltage output terminal (LVout), the clamping switch (25) and the receiving switch (30) being controlled in a complementary way with respect to each other. A transmission channel ( 1) for ultrasound applications is also described comprising at least such a switching circuit (10) and a process for driving said switching circuit (10).
Abstract:
A clamping circuit (10) to a voltage reference (GND) is described, of the type comprising at least one clamping core (11) connected to an output terminal (HVout) and having a central node (XC) connected to the voltage reference (GND) and in turn including at least one first and one second clamp transistor (MC1; MC2), connected to the central node (XC) and having respective control terminals (XG1, XG2), the clamping core (11) being also connected at the input to a low voltage input driver block (13). Advantageously according to the invention, the clamping core (11) further comprises at least one first switching off transistor (MS1) connected to the output terminal (HVout) and to the first clamp transistor (MC1), as well as a second switching off transistor (MS2) connected to the output terminal (HVout) and to the second clamp transistor (MC2), these first and second clamp transistors (MC1, MC2) being high voltage MOS transistors of complementary type and these first and second switching off transistors (MS1, MS2) being high voltage MOS transistors of complementary type and connected to the first and second clamp transistors (MC1, MC2) by having the respective equivalent or body diodes in anti-series so as to close themselves when the clamping circuit (10) is active and to sustain positive and negative high voltages when the clamping circuit (10) is not active.
Abstract:
A switching circuit for transmission channel for ultrasound applications is electrically coupled between a connection terminal and a low voltage output terminal. The switching circuit includes a receiving switch, a high voltage clamp circuit electrically coupled between the connection terminal and a central node, and a low voltage clamping switch electrically coupled between said central node and a reference voltage. The receiving switch is a low voltage switch and is electrically coupled between the central node and the low voltage output terminal. The clamping switch and the receiving switch are controlled in a complementary way with respect to each other. A transmission channel for ultrasound applications includes the switching circuit.