Device and method for filtering electrical signals, in particular acoustic signals
    1.
    发明公开
    Device and method for filtering electrical signals, in particular acoustic signals 审中-公开
    装置和方法,用于过滤的电信号,特别是声信号

    公开(公告)号:EP1395080A1

    公开(公告)日:2004-03-03

    申请号:EP02425541.6

    申请日:2002-08-30

    Abstract: A device for filtering electrical signals has a number of inputs (2L, 2R) arranged spatially at a distance from one another and supplying respective pluralities of input signal samples. A number of signal processing channels (10L, 10R), each formed by a neuro-fuzzy filter, receive a respective plurality of input signal samples and generate a respective plurality of reconstructed samples. An adder (11) receives the pluralities of reconstructed samples and adds them up, supplying a plurality of filtered signal samples. In this way, noise components are shorted. When activated by an acoustic scenario change recognition unit (5), a training unit (4) calculates the weights of the neuro-fuzzy filters, optimizing them with respect to the existing noise.

    Abstract translation: 一种用于过滤电信号设备具有多个彼此和供给输入信号采样的多个respectivement在距离空间上布置的输入(2L,2R)。 多个信号处理通道(10L,10R),每个由一个神经模糊滤波器构成,接收输入信号采样的respectivement多元性并生成重构样本respectivement多元性。 加法器(11)接收重构样本的复数,并且将它们相加后,供给滤波的信号采样的复数。 通过这种方式,噪声成分被短路。 当由声学场景变化识别单元(5)激活,锻炼单元(4)计算神经模糊滤波器的权重,相对于现有的噪声优化它们。

    Filtering device and method for reducing noise in electrical signals, in particular acoustic signals and images
    2.
    发明公开
    Filtering device and method for reducing noise in electrical signals, in particular acoustic signals and images 审中-公开
    过滤器装置和方法,用于以电信号降低噪音,特别是声信号和图像

    公开(公告)号:EP1211636A1

    公开(公告)日:2002-06-05

    申请号:EP00830782.9

    申请日:2000-11-29

    CPC classification number: G06K9/0051 G06N3/0436

    Abstract: The filtering device (80) comprises a neuro-fuzzy filter (1; 80) and implements a moving-average filtering technique in which the weights for final reconstruction of the signal ( oL 3 ( i )) are calculated in a neuro-fuzzy network (3) according to specific fuzzy rules. The fuzzy rules operate on three signal features ( X 1( i ), X 2( i ), X 3( i )) for each input sample ( e ( i )). The signal features are correlated to the position of the sample in the considered sample window, to the difference between a sample and the sample at the center of the window, and to the difference between a sample and the average of the samples in the window. The filter device for the analysis of a voice signal comprises a bank of neuro-fuzzy filters (86, 87). The signal is split into a number of sub-bands, according to wavelet theory, using a bank of analysis filters including a pair of FIR QMFs ( H 0 , H 1 ) and a pair of downsamplers (85, 86); each sub-band signal is filtered by a neuro-fuzzy filter (86, 87), and then the various sub-bands are reconstructed by a bank of synthesis filters including a pair of upsamplers (88, 89), a pair of FIR QMFs ( G 0 , G 1 ), and an adder node (92).

    Abstract translation: 过滤装置(80)包括一个神经模糊过滤器(1; 80),并实现移动平均滤波技术,其中用于信号的最终的重建(OL3(i))的权重的神经模糊网络计算( 3)雅丁具体模糊规则。 模糊规则对三个信号特征(X1(i)中,X2(i)中,X3(i))的每一个输入样本(E(i))的操作。 所述信号特征是相关的,以在所考虑的样品窗口中的样本的位置,到样品,并在该窗口的中心的样本之间的差值,以及在样品和样品中的窗口的平均之间的差。 用于语音信号的分析的过滤器装置包括神经模糊滤波器(86,87)的一组。 的信号被分成多个子频带,gemäß的小波理论,使用分析滤波器包括一对FIR QMFs(H0,H1)的一组和一对向下取样器(85,86); 每个子带信号由神经模糊滤波器(86,87)过滤,并通过合成滤波器包括一对的银行,则各个子带重构上采样器(88,89),一对FIR QMFs的 (G0,G1),以及加法器节点(92)。

Patent Agency Ranking