Abstract:
A thermal control circuit for an integrated power transistor includes a current generator controlled by a turn on signal, a sensing resistance in series with the power transistor, and a current limiter acting when the voltage drop on the sensing resistance overcomes a certain value. The circuit also includes a current amplifier coupled to the output node of the controlled current generator for outputting a drive current that is injected onto a control node of the power transistor. A soft thermal shut down circuit is provided having a conduction state which is enhanced as the temperature increases for reducing the drive current. The circuit controls the voltage on the power transistor in a more effective manner because the current amplifier has a variable gain controlled by the state of conduction of the soft thermal shut down circuit.
Abstract:
An integrated device in emitter-switching configuration is described. The device is integrated in a chip of semiconductor material of a first conductivity type which has a first surface and a second surface opposite to each other. The device comprises a first transistor having a base region, an emitter region and a collector region, a second transistor having a not drivable terminal for collecting charges which is connected with the emitter terminal of the first transistor, a quenching element of the first transistor which discharges current therefrom when the second transistor is turned off. The quenching element comprises at least one Zener diode made in polysilicon which is coupled with the base terminal of the first transistor and with the other not drivable terminal of the second transistor. The at least one polysilicon Zener diode is formed on the second surface of said chip and it comprises a polysilicon layer having at least one zone of the first conductivity type and at least one zone of a second conductivity type in order to form at least one P-N junction.