Abstract:
The present invention relates to a method for dewatering a web comprising microfibrillated cellulose, wherein the method comprises the steps of: providing a suspension comprising between 50 wt-% to 100 wt-% of microfibrillated cellulose based on total dry weight, forming a fibrous web of said suspension on a support wherein said web has a dry content of 1-25% by weight, applying a dewatering felt into direct contact with the fibrous web, conducting said fibrous web, arranged between said dewatering felt and said support, through at least one shoe press equipment, drying the dewatered web to form a film which film has an Oxygen Transmission Rate (OTR) value (23° C., 50% RH) below 100 cc/m2/24 h according to ASTM D-3985.
Abstract:
The present invention relates to a method for manufacturing a multilayer film comprising highly refined cellulose fibers, the method comprising the steps of: a) forming a first wet web by applying a first pulp suspension comprising highly refined cellulose fibers on a first wire; b) partially dewatering the first wet web to obtain a first partially dewatered web; c) forming a second wet web y applying a foamed second pulp suspension comprising highly refined cellulose fibers and a foaming agent on a second wire; d) partially dewatering the foamed second wet web to obtain a second partially dewatered web; e) joining the first and second partially dewatered web to obtain a multilayer web; and f) further dewatering, and optionally drying, the multilayer web to obtain a multilayer film comprising highly refined cellulose fibers.
Abstract:
A substantially dry composite material comprising a nanofibrillated polysaccharide and two or more additives, wherein the composite nanofibrillated polysaccharide is a microfibrillated cellulose and wherein the additives are lime milk and carbon dioxide, wherein the additives are allowed to react with each other and forming a precipitated calcium carbonate on the nanofibrillated polysaccharide, thereby forming a composite product comprising precipitated calcium carbonate and nanofibrillated polysaccharide.
Abstract:
The present invention relates to a strength enhancement agent for paper and paperboard, said strength enhancement agent comprising a fines-depleted highly refined cellulose pulp (FD-HIRC), wherein said FD-HIRC has a Schopper-Riegler (SR) number in the range of 60-100 as determined by standard ISO 5267-1, and wherein said FD-HRC has an amount of long (>0.2 mm) fibers of at least 8 million fibers per gram (based on dry weight), and wherein said FD-HRC has a Fines A value below 46, wherein the Fines A value is determined using an FS5 optical fiber analyzer. The present invention relates to a method for manufacturing said strength enhancement agent.
Abstract:
The present invention relates to a process for manufacturing a barrier film, wherein the method comprises:— providing an aqueous suspension comprising at least 70 weight-% highly refined cellulose pulp having an SR value of 70-95 and having a content of fibers having a length >0.2 mm of at least 10 million fibers per gram based on dry weight:— forming a wet web:— dewatering and/or drying to form a substrate:— calendering said substrate in at least one soft calender nip:— providing said substrate with at least one first layer of a barrier chemical to form a coated substrate, wherein each first layer has a coat weight of 0.5-5 gsm, and wherein a total coat weight on of the first layers is ≤8 gsm, and— drying to form said barrier film having a thickness of
Abstract:
The invention relates to a process for treating cellulose fibres which process comprises the steps of providing a slurry comprising cellulose fibers, adding anionic polyacrylamide (A-PAM) with high molar mass to the slurry in a first step and subjecting the slurry comprising fibers and A-PAM to a mechanical treatment in a second step thereby forming a composition comprising microfibrillated cellulose. The invention further relates to a composition produced according to the process.
Abstract:
The present invention relates to a cellulose-based gas barrier film, said cellulose-based gas barrier film comprising at least 50 wt % of a fines-depleted highly refined cellulose pulp (FD-HRC), wherein said FD-HRC has a Schopper-Riegler (SR) number in the range of 80-100 as determined by standard ISO 5267-1, wherein said FD-HIRC has an amount of long (>0.2 mm) fibers of at least 8 million fibers per gram (based on dry weight), and wherein said FD-HRC has a Fines A value below 46%, wherein the Fines A value is determined using an FS5 optical fiber analyzer. The present invention relates to a method for manufacturing said cellulose-based gas barrier film.
Abstract:
The present invention relates to a method for fractionation of a highly refined cellulose pulp into a fine fraction and coarse fraction, said method comprising: a) providing a highly refined cellulose pulp suspension comprising highly refined cellulose pulp having a Schopper-Riegler (SR) number in the range of 40-98 as determined by standard ISO 5267-1 and a content of fibers having a length >0.2 mm of at least 7 million fibers per gram based on dry weight; b) subjecting the highly refined cellulose pulp suspension to dewatering in a belt filter; c) collecting the dewatered retentate as the coarse fraction; and d) collecting the filtrate as the fine fraction; wherein the collected fine fraction contains 2-50 wt % of the solids of the highly refined cellulose pulp suspension provided in step a).
Abstract:
The present invention relates to a method for manufacturing a film comprising highly refined cellulose fibers in a paper-making machine, the method comprising the steps of: a) providing an aqueous pulp suspension comprising at least 20% by dry weight of highly refined cellulose fibers having an SR (Schopper-Riegier) value in the range of 80-100 at a consistency in the range of 0.8-3 wt % and; b) deflocculating and diluting the aqueous pulp suspension to a lower consistency in the range of 0.1-1.5 wt % by injecting the aqueous pulp suspension into an aqueous stream using a high shear mixer to obtain a diluted aqueous pulp suspension; and c) feeding the diluted aqueous pulp suspension to a headbox of the paper-making machine.
Abstract:
A method for the production of a composite material comprising nanofibrillated polysaccharide, the method comprising the following steps: (i) providing a liquid suspension of the nanofibrillated polysaccharide; (ii) bringing said liquid suspension in contact with at least one additive, thereby forming a composite material suspension, wherein the composite comprises the nanofibrillated polysaccharide and the at least one additive, (iii) increasing the solid contents of said composite material suspension, thereby forming a high solid contents composite material suspension.