Abstract:
Prior power supply systems which develop constant-frequency AC power and/or DC power from variable-speed motive power require complex electrical power converters, special electromagnetic machines or bulky constant speed drives. These components may render the system unsuitable for use in some applications. In order to overcome this problem, a power supply system for developing electrical power from variable-speed motive power produced by a prime mover includes a differential speed summer (18) having a first shaft (16) coupled to the prime mover (12) and further having second and third shafts (20, 24) coupled to first and second generators (22, 26), respectively, a power conditioner (30) coupled to the second generator (26) for conditioning the power developed thereby and means (34) for regulating the conditioned power developed by the second generator (26) so that the first generator (22) develops constant-frequency AC power.
Abstract:
A circuit in a power system for suppressing an AC ripple superimposed on a bus signal (70) on a bus (18a and 18b) includes a first circuit (60) for producing first and second signals (62a and 62b) having a frequency substantially equal to the AC ripple frequency wherein the second signal (62b) is a phase quadrature of the first signal (62a), a second circuit (64, 66, 76, 78, 84 and 86) for combining these signals with a signal representing the bus signal (70) having the AC ripple superimposed thereon so as to derive a control signal (88 and 90) having substantially the same frequency and phase as the AC ripple, and third circuit (92) responsive to this control signal (88 and 90) so as to substantially suppress the AC ripple on the bus (18a and 18b).
Abstract:
A transformer rectifier unit (10) is provided for developing regulated DC output power from first (26) and second (28) sources of unregulated DC power. The transformer rectifier (20) connectable to a source (16) of AC input power and first (22) and second (24) secondary windings. The first secondary winding (22) develops AC power at a first level and the second secondary winding (24) develops AC power at a second level lower than the first level. First (26) and second (28) rectifier circuits are respectively coupled to the first (22) and second (24) secondary windings for rectifying the AC power therefrom to DC power having corresponding first and second DC levels. A switch S is coupled between an output VR1 of the first rectifier circuit (26) and an output VR2 of the second rectifier circuit (28) and is operable in first and second switching states to provide DC output power from one of the rectifier circuits to a load (14). A pulse-width modulation control circuit (32) is responsive to the difference between a desired DC output level and an actual DC output level and operates the switch (S) between first and second states to provide regulated DC output power. In an alternative embodiment of the invention, the transformer (52) comprises Y- secondary winding sets.
Abstract:
Systems and methods for starting a prime mover (21), such as a gas turbine engine of an aircraft auxiliary power unit (APU), are disclosed herein whereby an electromagnetic machine (10) is operated as a motor during operation in a self starting mode to bring the prime mover (21) up to selfsustaining speed. The same electromagnetic machine (10) is thereafter operated as a generator during operation in a generating mode.
Abstract:
A variable speed, constant frequency electrical generating system has a variable speed, engine driven generator. The system operates in either a generate or an engine start mode. A bidirectional filter connected between the rectifier-converter and the AC bus traps or blocks switching harmonics from the rectifier-converter. Short trap circuits are connected either phase-to-phase or phase-to-neutral.
Abstract:
Engine start capability may be added to an aircraft generating system including a variable speed, constant frequency inverter (34) by placing transistors (48) in shunt relation to diodes (22) forming part of a full wave rectifier for rectifying A.C. power from a brushless generator output winding (10) which is normally supplied to the inverter (34) for conversion to constant frequency A.C. power. A source of D.C. power (60) may be connected to the diodes (22) and transistors (48) and the latter are operated by an inverter controller (52) to convert the D.C. power so provided to alternating current to be fed to the brushless generator output windings (10) and cause the brushless generator to operate as an A.C. motor for the starting of a turbine engine (18) or the like.
Abstract:
On peut ajouter la capacité de démarrage au système générateur d'un moteur d'avion comprenant un onduleur à vitesse variable et à fréquence constante (34), en plaçant des transistors (48) en dérivation par rapport à des diodes (22) faisant partie d'un redresseur biphasé destiné à redresser l'alimentation en courant alternatif provenant d'un enroulement de sortie de générateur sans balais (10) et alimentant normalement l'onduleur (34) en vue de sa conversion en courant alternatif à fréquence constante. Une source de courant continu (60) peut être connectée aux diodes (22) et aux transistors (48), ceux-ci étant actionnés par un dispositif de commande (52) de l'onduleur afin de convertir le courant continu fourni en courant alternatif destiné à alimenter les enroulements de sortie de générateurs sans balais (10) et permettre au générateur sans balais de fonctionner comme un moteur à courant alternatif en vue du démarrage d'un turbo moteur (18) ou autre.
Abstract:
Les systèmes d'alimentation de puissance de l'art antérieur développent une énergie à courant continu et/ou à courant alternatif à fréquence constante à partir d'une puissance motrice à vitesse variable et nécessitent des convertisseurs d'énergie électrique complexes, des machines électromagnétiques spéciales ou des entraînements à vitesse constante encombrants. Ces composants peuvent rendre le système inapproprié dans certaines applications. De manière à résoudre ce problème, un système d'alimentation de puissance électrique pour le développement de puissance électrique à partir d'une puissance motrice à vitesse variable produite par un moteur principal comprend un additioneur de vitesse différentiel (18) ayant un premier arbre (16) couplé au moteur principal (12) ainsi que des deuxième et troisième arbres (20, 24) couplés au premier et au second générateurs (22, 26), respectivement, un dispositif de conditionnement de puissance (30) couplé au second générateur (26) pour conditionner la puissance développée ainsi que des moyens (34) pour la régulation de la puissance conditionnée développée par le second générateur (26) de sorte que le premier générateur (22) développe une puissance électrique à courant alternatif à fréquence constante.
Abstract:
Systems and methods for starting a prime mover (21), such as a gas turbine engine of an aircraft auxiliary power unit (APU), are disclosed herein whereby an electromagnetic machine (10) is operated as a motor during operation in a self starting mode to bring the prime mover (21) up to selfsustaining speed. The same electromagnetic machine (10) is thereafter operated as a generator during operation in a generating mode.