Abstract:
Prior types of neutral point clamped PWM inverters pulses in a PWM waveform having reference points which are evenly spaced. Such a control technique, however, accomplishes a significant reduction in output harmonics only for relatively low inverter output magnitudes. In order to overcome this problem, a control for a PWM inverter defines a series of reference points (alpha) spaced in time in accordance with an inverse trigonometric function of the number of pulses (9) to be produced in a portion (180 DEG ) of the inverter output wherein each reference point is associated with a pulse to be produced in the PWM waveform and determines rising (R1, R2...) and falling (F1, F2...) edges of each pulse of the AC output relative to the reference point associated with such pulse in dependence upon an output parameter of the inverter. Switch control signals are developed for each switch from the defined rising and falling edges. The control of the present invention accomplishes a significant reduction in the harmonics produced by the inverter at higher inverter output magnitudes.
Abstract:
A load (32) is controlled by a pulse waveform from a source (30). The source and load are electrically isolated by using two monostable circuits (11, 12) to detect the leading and trailing edge of the pulse waveform, two pulse transformers (T1, T2) to isolate the source and the load, and a bistable circuit (21) to reconstruct the original pulse waveform.
Abstract:
The problem of sensing current through inverter switches (SW1, SW2) is solved by a current transformer (21) which has windings (40, 41) connected with the flyback diodes (D1, D2) to demagnetize or reset the current transformer core. Size and weight of the transformer are minimized while avoiding a buildup of flux which would saturate the core.
Abstract:
A push-pull converter has transistor power switches (20, 21) which conduct alternately to connect a DC source (+V, -V) with the primary windings (16, 17) of an output transformer (15). A turn-off snubber circuit (31, 32) is connected with each power switch. When a power switch is turned on, snubber current pulses flow in the circuits connected with both switches. A switch current sensoring circuit has a current transformer with an output winding (45, 46 or 55) inductively coupled with each of the conductors (47, 48) connected between the power switches (20, 21) and the primary windings (16, 17) of the output transformer (15). The snubber current pulses (37, 50, 51) through the conductors are 180o out of phase and are suppressed in the current transformer output. The switch current signal from the secondary (55) of the current transformer (54) is free of snubber current pulses and is used in a flux balance circuit (68, 69, 70) and in a pulse-by-pulse current limiter (72).
Abstract:
Un convertisseur push-pull possède des commutateurs de puissance à transistors (20, 21) qui conduisent en alternance pour relier une source de courant continu (+V, -V) aux enroulements primaires (16, 17) d'un transformateur de sortie (15). Un circuit d'amortissement de mise hors tension (31, 32) est relié à chaque commutateur de puissance. Lorsqu'un commutateur de puissance est mis sous tension, des impulsions de courant d'amortissement s'écoulent dans les circuits reliés aux deux commutateurs. Un circuit de détection de courant de commutation possède un transformateur de courant avec un enroulement de sortie (45, 46 ou 55) couplé de manière inductive avec chaque conducteur (47, 48) connecté entre les commutateurs de puissance (20, 21) et les enroulements primaires (16, 17) du transformateur de sortie (15). Les impulsions du courant d'amortissement (37, 50, 51) au travers des conducteurs sont déphasées de 180o et sont supprimées dans le courant de sortie du transformateur. Le signal de courant de commutation provenant du secondaire (55) du transformateur de courant (54) est exempt d'impulsions de courant d'amortissement et est utilisé dans un circuit d'équilibrage de flux (68, 69, 70) et dans un limiteur de courant impulsion par impulsion (72).