Abstract:
Nicking of the conductors (30) of the end turns (20) in the stator (10, 12, 14) of a dynamoelectric machine during the installation of a temperature sensor (26) is avoided by locating the temperature sensor (26) in a gap (22) between the coils defining adjacent end turns (20), thereby providing a machine capable of rapidly responding to excess heat even in a locked rotor situation before detectable levels of smoke, gas, and odors are generated.
Abstract:
Long thermal paths and the resulting slow response times in sealed and electrically insulated thermal sensors may be substantially reduced by insulating and sealing the sensor (26) by a method which includes the steps of providing (30) an electrostatic fluidized bed of electrically insulating resin; locating (34) the sensor (26) at the bed; coating (36) the sensor (26); removing (38) the sensor from proximity to the bed; and curing (40) to the resin to form a uniform, thin coating encapsulating the sensor (26).
Abstract:
Nicking of the conductors (30) of the end turns (20) in the stator (10, 12, 14) of a dynamoelectric machine during the installation of a temperature sensor (26) is avoided by locating the temperature sensor (26) in a gap (22) between the coils defining adjacent end turns (20), thereby providing a machine capable of rapidly responding to excess heat even in a locked rotor situation before detectable levels of smoke, gas, and odors are generated.
Abstract:
Nicking of the conductors (30) of the end turns (20) in the stator (10, 12, 14) of a dynamoelectric machine during the installation of a temperature sensor (26) is avoided by locating the temperature sensor (26) in a gap (22) between the coils defining adjacent end turns (20), thereby providing a machine capable of rapidly responding to excess heat even in a locked rotor situation before detectable levels of smoke, gas, and odors are generated.
Abstract:
Long thermal paths and the resulting slow response times in sealed and electrically insulated thermal sensors may be substantially reduced by insulating and sealing the sensor (26) by a method which includes the steps of providing (30) an electrostatic fluidized bed of electrically insulating resin; locating (34) the sensor (26) at the bed; coating (36) the sensor (26); removing (38) the sensor from proximity to the bed; and curing (40) to the resin to form a uniform, thin coating encapsulating the sensor (26).