Abstract:
A method for producing a film of compound semiconductor includes providing a substrate and a compound bulk material having a first chemical composition that includes at least one first chemical element and a second chemical element. A film is deposited on the substrate using the compound bulk material as a single source of material. The deposited film has a composition substantially the same as the first chemical composition. A residual chemical reaction is induced in the deposited film using a source containing the second chemical element to thereby increase the content of the second chemical element in the deposited film so that the deposited film has a second chemical composition. The film may be employed in a photovoltaic device.
Abstract:
Una película o revestimiento para transmisión de datos ópticos en el espacio libre, que comprende: - una primera capa externa (402), que incluye una primera área que se extiende en un plano de la primera capa externa (402) que transmite señales de datos ópticos recibidas en un intervalo de ángulos de incidencia; y - una segunda capa (403) que incluye una segunda área que se extiende en un plano de la segunda capa (403) que subyace a la primera capa externa (402) en la que al menos una parte de las señales de datos ópticas recibidas desde la primera capa externa (402) se concentra en un área sustancialmente reducida, en la que la segunda capa (403) solo transmite señales de datos ópticos desde un área de recolección óptica específica que se define en la segunda capa, siendo el área de recolección óptica específica menor que una totalidad de la segunda capa ( 403); - un detector óptico (407) para recibir las señales de datos ópticos; - una tercera capa (404) que acepta las señales de datos ópticos de la segunda capa (403), la tercera capa (404) que incluye al menos una guía de ondas (408) para dirigir las señales de datos ópticos al detector óptico (407), en el que al menos una guía de ondas (408) especialmente tiene dimensiones que hacen que se reduzca la interferencia óptica u otros efectos de degradación de la señal; y - una conexión eléctrica que se extiende desde el detector óptico (407) a un dispositivo receptor externo.
Abstract:
A method is provided for producing a thin-film device such as a photovoltaic device. The method begins by forming at least one semiconductor device on a first substrate. At least one secondary substrate having a plurality of indentations is attached to the at least one semiconductor device. The at least one semiconductor device is separated from the at least one first substrate.
Abstract:
Un método de formación de partículas composicionalmente homogéneas, que comprende: (i) formar una masa fundida homogénea (110) a partir de una pluralidad de materiales constituyentes bajo una primera presión suficiente para evitar la vaporización sustancial de los materiales constituyentes; (ii) generar pequeñas gotas a partir de la masa fundida homogénea (110); y (iii) enfriar pequeñas gotas bajo una segunda presión suficiente para evitar la vaporización sustancial de los materiales constituyentes al menos hasta que las partículas homogéneas formadas a partir de las mismas se hayan estabilizado.
Abstract:
A method and apparatus of forming compositionally homogeneous particles is provided. The method includes forming a homogenous melt from a plurality of constituent materials under a first pressure sufficient to prevent substantial vaporization of the constituent materials. Droplets are generated from the homogenous melt. The droplets are cooled under a second pressure sufficient to prevent substantial vaporization of the constituent materials at least until the homogeneous particles formed therefrom have stabilized.
Abstract:
A photovoltaic device is provided which includes a plurality of junction layers. Each junction layer includes a plurality of photovoltaic cells electrically connected to one another. At least one of the junction layers is at least in part optically transmissive. The junction layers are arranged in a stack on top of each other.
Abstract:
A method is provided for fabricating a thin-film semiconductor device. The method includes providing a plurality of raw semiconductor materials. The raw semiconductor materials undergo a pre-reacting process to form a homogeneous compound semiconductor material. This pre-reaction typically includes processing above the liquidus temperature of the compound semiconductor. The compound semiconductor material is reduced to a particulate form and deposited onto a substrate to form a thin-film having a composition and atomic structure substantially the same as a composition and atomic structure of the compound semiconductor material.
Abstract:
A patterned photovoltaic device includes at least one photovoltaic cell, at least one carrier substrate attached to the cell, and at least one opening extending through the cell and the carrier substrate.
Abstract:
A multi-input electrical power conversion device is provided for converting multiple DC energies each arising from different junctions in a multi-junction solar cells into AC energy. The device includes a plurality of electrical inputs for receiving the multiple DC energies from at least one multi-junction solar cell. The number of DC energies id no less than the number of junctions in the multi-junction solar cell. The device also includes at least one DC-to-AC circuit for receiving the multiple DC energies from the plurality of electrical inputs and at least one electrical output receiving at least one AC energy from the DC to AC circuit. The device also includes at least one MPPT circuit operatively coupled to the DC to AC circuit.
Abstract:
A photovoltaic device includes a plurality of photovoltaic cells disposed in an array in which each cell is adjacent to another cell. Each of the cells includes first and second photovoltaic modules. The first photovoltaic module of each cell is configured to convert a first part of light energy incident thereon into electrical energy and to reflect to the second photovoltaic module of an adjacent cell at least some of a remaining portion of light energy incident thereon. The second photovoltaic module of each cell is configured to convert into electrical energy the remaining portion of the light energy received from the first photovoltaic module of an adjacent cell.