Abstract:
The invention relates to the use of a mineral having perovskite structure in vinyl aromatic polymer foam, i) for decreasing the thermal conductivity, ii) for increasing the mechanical properties (namely compressive strength and bending strength), or iii) for improving the self-extinguishing properties of the foam. The polymer foam further comprises one or more athermanous additives selected from a) powder inorganic additive selected from powders of silica and calcium phosphate, b) powder carbonaceous additive selected from powders of graphite, carbon black, petroleum coke, graphitized carbon black, graphite oxides, and graphene, and c) powder geopolymer and powder geopolymer composite.
Abstract:
The invention relates to an extrusion process for the production of expandable vinyl aromatic polymer granulate comprising mixing first and second additives with first and second polymer components, respectively, in dedicated mixers.
Abstract:
The invention relates to the co-use of a) a certain type of silica and b) a certain type of graphite, wherein the silica and the graphite are used in a weight ratio in a range of from 1:1 to 1:10, for decreasing the thermal conductivity of vinyl aromatic polymer foam.
Abstract:
The present invention relates to a process for the production of a geopolymer composite. It further relates to a geopolymer composite, and the use of a geopolymer, a geopolymer in combination with an athermanous additive, or the geopolymer composite in expanded vinyl polymer, preferably vinyl aromatic polymer. Furthermore, the invention relates to a process for the production of expandable vinyl aromatic polymer granulate, and expandable vinyl aromatic polymer granulate. Finally, the present invention relates to expanded vinyl foam, preferably vinyl aromatic polymer, and to a masterbatch comprising vinyl polymer and a), b), or c).
Abstract:
The invention relates to the use of a mineral having perovskite structure in vinyl aromatic polymer foam, i) for decreasing the thermal conductivity, ii) for increasing the mechanical properties (namely compressive strength and bending strength), or iii) for improving the self-extinguishing properties of the foam. The polymer foam further comprises one or more athermanous additives selected from a) powder inorganic additive selected from powders of silica and calcium phosphate, b) powder carbonaceous additive selected from powders of graphite, carbon black, petroleum coke, graphitized carbon black, graphite oxides, and graphene, and c) powder geopolymer and powder geopolymer composite.
Abstract:
The invention relates to the use of a mineral having perovskite structure in vinyl aromatic polymer foam, i) for decreasing the thermal conductivity, ii) for increasing the mechanical properties (namely compressive strength and bending strength), or iii) for improving the self-extinguishing properties of the foam. The polymer foam further comprises one or more athermanous additives selected from a) powder inorganic additive selected from powders of silica and calcium phosphate, b) powder carbonaceous additive selected from powders of graphite, carbon black, petroleum coke, graphitized carbon black, graphite oxides, and graphene, and c) powder geopolymer and powder geopolymer composite.
Abstract:
The invention relates to an extrusion process for the production of expandable vinyl aromatic polymer granulate comprising mixing first and second additives with first and second polymer components, respectively, in dedicated mixers.
Abstract:
The invention relates to the co-use of a) a certain type of silica and b) a certain type of graphite, wherein the silica and the graphite are used in a weight ratio in a range of from 1:1 to 1:10, for decreasing the thermal conductivity of vinyl aromatic polymer foam.
Abstract:
The invention relates to the co-use of a) a certain type of silica and b) a certain type of graphite, wherein the silica and the graphite are used in a weight ratio in a range of from 1:1 to 1:10, for decreasing the thermal conductivity of vinyl aromatic polymer foam.