Abstract:
An organic light emitting display device includes a substrate, a semiconductor pattern disposed on the substrate, a conductive line disposed in a different layer from the semiconductor pattern, a pixel electrode disposed on the conductive line and on the semiconductor pattern, and a connection electrode disposed in a same layer as the pixel electrode. The connection electrode may be connected to the semiconductor pattern and the conductive line.
Abstract:
A display device includes a normal pixel including a first driving transistor and a first compensation transistor connected to a gate and drain of the first driving transistor, and a compensation pixel including a second driving transistor and a second compensation transistor connected to a gate and drain of the second driving transistor. The second compensation transistor is open.
Abstract:
A display device includes a substrate, an insulating layer, and a crack-sensing line. The substrate includes a display area having a plurality of pixels to display images, and a non-display area surrounding the display area. The insulating layer is disposed in the non-display area and includes a recess. The crack-sensing line is disposed in and extends along the recess, and electrically connected to at least one of the pixels. The recess is disposed at a surface or inside of the insulating layer, and extends along the non-display area.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode, a first insulating layer arranged between the active layer and the gate electrode, and a second insulating layer arranged between the gate, source, and drain electrodes. The OLED display also includes a third insulating layer covering the source and drain electrodes, wherein an opening is defined in each of the second and third insulating layers and wherein the openings substantially overlap. The OLED display further includes a pixel electrode formed in the openings defined in the second and third insulating layers and including a semi-permeable metal layer.
Abstract:
A display device includes a substrate, first and second electrodes above the substrate, an organic pattern layer between the first and second electrodes, a light-emitting element above the organic pattern layer, first and second contact electrodes above the light-emitting element, a first reflective electrode on the first electrode and a second reflective electrode on the second electrode extending along a side of the light-emitting element, a via layer covering a portion of the first and second reflective electrodes, and defining first and second connection holes, a first connection electrode above the via layer, connecting the first reflective and contact electrodes through the first connection hole, and contacting the first reflective electrode on a side of the light-emitting element, and a second connection electrode connecting the second reflective and contact electrodes through the second connection hole, and contacting the second reflective electrode on a side of the light-emitting element.
Abstract:
A display device according to an embodiment including: a base layer including a first surface and a second surface; a first backplane layer disposed on the first surface of the base layer and including a pixel circuit; a second backplane layer disposed on the second surface of the base layer and including a rear wire; and a light-emitting-element layer disposed on the first backplane layer and including a light emitting element. The base layer has a transmittance of about 15% or less with respect to light having a wavelength of about 290 nm or less.
Abstract:
The present disclosure relates to a light emitting diode display device, and a light emitting diode display device according to an exemplary embodiment includes: a substrate; a semiconductor disposed on the substrate; a gate electrode disposed on the semiconductor; an interlayer insulating layer disposed on the substrate and the gate electrode; source and drain electrodes disposed on the interlayer insulating layer and connected to the semiconductor; a first slit provided in the interlayer insulating layer; and a first wire disposed on the interlayer insulating layer and configured to overlap the first slit.
Abstract:
An organic light emitting display device comprises a common voltage line formed over a peripheral region of a substrate; a passivation layer formed over a pixel region of the substrate and the peripheral region; pixel electrodes formed over the pixel region; and a pixel defining layer formed over the pixel region and the peripheral region. The pixel defining layer defines pixel openings overlapping the pixel electrodes, respectively. The device further comprises organic light emitting layers formed over the pixel region, and disposed in the pixel openings and over the pixel electrodes, respectively; and a common electrode formed over the pixel and peripheral regions. The common electrode is disposed over the pixel defining layer and the organic light emitting layers. The common electrode contacts the common voltage line. The passivation layer comprises a portion overlapping the common voltage line but not overlapping the pixel defining layer.
Abstract:
An organic light-emitting display apparatus includes a thin film transistor including a first insulating layer between an active layer and a gate electrode, and a second insulating layer between the gate electrode and source/drain electrodes, a pad electrode including a first pad layer on a same layer as the source/drain electrodes and a second pad layer, a third insulating layer including an organic insulating material covering the source/drain electrodes and an end portion of the pad electrode, a pixel electrode including a semi-transmissive metal layer, in an opening in the third insulating layer, a cathode contact unit including a first, second, and third contact layers, a fourth insulating layer covering the end portion of the pad electrode, an organic emission layer on the pixel electrode, and an opposing electrode on the organic emission layer.
Abstract:
A display device includes a substrate that includes a display area and a non-display area; a mask support that is disposed in the non-display area of the substrate; a sealant that is disposed in the non-display area of the substrate and is disposed between the mask support and the display area; an insulating layer that is disposed between the sealant and the mask support; and a plurality of grooves that are formed by removing at least a part of the insulating layer.