Abstract:
A semiconductor package includes: a lower package including a lower semiconductor chip, a molding layer on a side surface of the lower semiconductor chip, a conductive post in the molding layer and having a concave top surface, a lower redistribution pattern electrically connecting the lower semiconductor chip to the conductive post, and an upper redistribution electrically connected the conductive post; and an upper package on the lower package, the upper package including an upper semiconductor chip. A first portion of an inner wall of the molding layer contacts a sidewall of the conductive post, and a second portion of the inner wall of the molding layer extends vertically above the top surface of the conductive post, wherein the first and second portions of the inner wall of the molding layer are vertically coplanar with each other and with the sidewall of the conductive post.
Abstract:
A semiconductor chip includes: a semiconductor substrate; a pad insulating layer on the semiconductor substrate; a through electrode which penetrates the semiconductor substrate and the pad insulating layer and includes a conductive plug and a conductive barrier layer surrounding a sidewall of the conductive plug; and a bonding pad which surrounds a sidewall of the through electrode and is spaced apart from the conductive plug with the conductive barrier layer disposed therebetween.
Abstract:
A semiconductor package includes an interposer having a first surface and a second surface opposite to the first surface and including a plurality of bonding pads, and first and second semiconductor devices on the interposer. Each of the plurality of bonding pads includes a first pad pattern provided to be exposed from the first surface and having a first width and a second pad pattern provided on the first pad pattern and having a second width greater than the first width.
Abstract:
Provided are electrical connection structures and methods of fabricating the same. The structures may include a substrate including a bonding pad region provided with a bonding pad and a fuse region provided with a fuse, an insulating layer provided on the substrate and including a bonding pad opening exposing the bonding pad and a fuse opening exposing the fuse region, a connection terminal provided in the bonding pad region and electrically connected to the bonding pad, and a protection layer provided on the insulating layer including a first protection layer provided within the bonding pad region and a second protection layer in the fuse opening.
Abstract:
A semiconductor package includes a semiconductor chip including a chip pad; a lower redistribution structure on the semiconductor chip, the lower redistribution structure including a lower redistribution insulating layer and a lower redistribution pattern electrically connected to the chip pad of the semiconductor chip; a molding layer on at least a portion of the semiconductor chip; and a conductive post in the molding layer, the conductive post having a bottom surface and a top surface, the bottom surface of the conductive post being in contact with the lower redistribution pattern of the lower redistribution structure and the top surface of the conductive post having a concave shape.
Abstract:
A semiconductor chip includes: a semiconductor substrate; a pad insulating layer on the semiconductor substrate; a through electrode which penetrates the semiconductor substrate and the pad insulating layer and includes a conductive plug and a conductive barrier layer surrounding a sidewall of the conductive plug; and a bonding pad which surrounds a sidewall of the through electrode and is spaced apart from the conductive plug with the conductive barrier layer disposed therebetween.
Abstract:
A semiconductor package including a semiconductor chip, a redistribution layer structure disposed under the semiconductor chip, a bump pad disposed under the redistribution layer structure and having an upper structure of a first width and a lower structure of a second width less than the first width, a metal seed layer disposed along a lower surface of the upper structure and a side surface of the lower structure, an insulating layer surrounding the redistribution layer structure and the bump pad, and a bump structure disposed under the bump pad. A first undercut is disposed at one end of the metal seed layer that contacts the upper structure, and a second undercut is disposed at an other end of the metal seed layer that contacts the lower structure.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes a via passivation layer disposed on an inactive surface of a substrate, a through-electrode vertically penetrating the substrate and the via passivation layer, a concave portion formed in the top surface of the via passivation layer and disposed adjacent to the through-electrode, and a via protective layer coplanar with the via passivation layer and the through-electrode and to fill the concave portion. In a horizontal cross-sectional view, the via protective layer has a band shape surrounding the through-electrode.
Abstract:
There are provided semiconductor packages including a redistribution substrate and a semiconductor chip mounted on the redistribution substrate. The redistribution substrate may include a lower protective layer, a first conductive pattern disposed on the lower protective layer, a first insulating layer surrounding the first conductive pattern and disposed on the lower protective layer, and a second insulating layer disposed on the first insulating layer. The first insulating layer may include a first upper surface that includes a first flat portion extending parallel to an upper surface of the lower protective layer, and a first recess facing the lower protective layer and in contact with the first conductive pattern. The first recess may be directly connected to the first conductive pattern.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes a via passivation layer disposed on an inactive surface of a substrate, a through-electrode vertically penetrating the substrate and the via passivation layer, a concave portion formed in the top surface of the via passivation layer and disposed adjacent to the through-electrode, and a via protective layer coplanar with the via passivation layer and the through-electrode and to fill the concave portion. In a horizontal cross-sectional view, the via protective layer has a band shape surrounding the through-electrode.