Abstract:
A method and power transmitter for efficiently controlling power transmission to one or more power receivers in a wireless multi-power transmission system are provided. The method includes performing, when a predetermined measurement cycle arrives, a load measurement; comparing a current load measurement value with a previous load measurement value; determining whether the current load measurement value is increased over the previous load measurement value by at least as much as a first predetermined threshold; gradually increasing, when the load measurement value is increased over the previous load measurement value by at least as much as the first threshold, a transmission power value until a request for a subscription to a wireless multi-power transmission network from a power reception target within a predetermined time limit; and stopping, when the request for the subscription is not received before the time limit is exceeded, power transmission to the power reception target.
Abstract:
A method for controlling an electronic device including a charging circuit is provided. The method includes receiving power wirelessly from a power transmitting device; rectifying the received power; based on a voltage of the rectified power being greater than or equal to an allowable voltage of the charging circuit, controlling to convert the rectified power through a converting circuit of the electronic device and to output the converted power to the charging circuit for charging a battery of the electronic device, wherein the allowable voltage relates to a maximum voltage or a preferable voltage to be applied to the charging circuit; and based on the voltage of the rectified power being less than the allowable voltage of the charging circuit, controlling to stop converting the rectified power and to output the rectified power to the charging circuit by connecting the rectifying circuit to the charging circuit.
Abstract:
A disclosed electronic device includes a housing having an opening, a roll mounted in the housing, a flexible display wound on the roll and being extendable and retractable through the opening based on a rotation direction of the roll, and a roll guide configured to guide the roll to move in a direction capable of constantly maintaining a proceeding direction of the flexible display toward the opening in the housing, based on a variation in a wound length of the flexible display on the roll.
Abstract:
An apparatus and a method for are provided for a wireless power receiver. The method includes receiving power from a wireless power transmitter; converting the power in an alternating current (AC) form into a direct current (DC) form and providing the converted power to a battery of the electronic device; measuring a temperature of a point in the wireless power receiver during reception of the wireless power; maintaining an amount of the converted power at a first level if the temperature is lower than a first temperature; decreasing the amount of the converted power to a second level which is lower than the first level if the amount of the converted power is at the first level and the temperature is higher than or equal to the first temperature; stopping providing the converted power to the battery if the temperature is higher than a second temperature; and transmitting, to the wireless power transmitter, a signal including status information of the wireless power receiver device and control information to control the wireless power transmitter.
Abstract:
Methods and apparatus are provided for detecting a non-intended object of power reception by a power transmitter. Power transmission for communication is performed, when the load change is sensed that has a value greater than or equal to a predetermined threshold. It is determined whether a subscription request, for subscribing to a network is received within a predetermined time period. The power transmission for communication is stopped when the subscription request is not received within the predetermined time period. Power is transmitted to a power receiver that has transmitted the subscription request, when the subscription request is received within the predetermined time period. It is determined whether a leakage power value exceeds an allowable range, when the power state report is received from the power receiver. The transmission of the power to the power receiver is stopped, when the leakage power value exceeds the allowable range.
Abstract:
Disclosed is a method for advance detection of output power, before arrival at a boundary frequency between an inband and an outband during frequency tracking in a wireless charging apparatus, the wireless charging apparatus including a first resonator resonating at a lower-limit frequency of the inband and a second resonator resonating at an upper-limit frequency of the inband, to adaptively adjust the frequency based on the power values output from the first and second resonators, and to determine a power transmission control value corresponding to the adjusted frequency, thereby enabling frequency control and power control within the inband.
Abstract:
An electronic device includes a controller to receive a signal from an external electronic device, and, based at least in part on the received signal, identify a wireless power scheme among at least two wireless power schemes. During the transmission mode, the controller controls the full bridge circuit to convert DC power to AC power based on a wireless power frequency corresponding to the identified wireless power scheme by controlling at least one transistor of the full bridge circuit, and controls to wirelessly transmit power based on the AC power to the external electronic device. During the reception mode, the controller controls to receive power from the external electronic device, controls the full bridge circuit to convert the received power to DC power by controlling transistors of the full bridge circuit, and controls to provide the converted DC power for the battery of the electronic device.
Abstract:
A method for controlling a wireless power receiver including a charging unit and a wireless power receiver are provided. The method includes receiving wireless power; rectifying the received wireless power and outputting Direct Current (DC) wireless power; and determining whether a voltage of the rectified wireless power is equal to or higher than an allowable voltage of the charging unit.
Abstract:
A method and power transmitter for efficiently controlling power transmission to one or more power receivers in a wireless multi-power transmission system are provided. The method includes performing, when a predetermined measurement cycle arrives, a load measurement; comparing a current load measurement value with a previous load measurement value; determining whether the current load measurement value is increased over the previous load measurement value by at least as much as a first predetermined threshold; gradually increasing, when the load measurement value is increased over the previous load measurement value by at least as much as the first threshold, a transmission power value until a request for a subscription to a wireless multi-power transmission network from a power reception target within a predetermined time limit; and stopping, when the request for the subscription is not received before the time limit is exceeded, power transmission to the power reception target.
Abstract:
A method for controlling an electronic device including a charging circuit is provided. The method includes receiving power wirelessly from a power transmitting device; rectifying the received power; based on a voltage of the rectified power being greater than or equal to an allowable voltage of the charging circuit, controlling to convert the rectified power through a converting circuit of the electronic device and to output the converted power to the charging circuit for charging a battery of the electronic device, wherein the allowable voltage relates to a maximum voltage or a preferable voltage to be applied to the charging circuit; and based on the voltage of the rectified power being less than the allowable voltage of the charging circuit, controlling to stop converting the rectified power and to output the rectified power to the charging circuit by connecting the rectifying circuit to the charging circuit.