Abstract:
A transducer is configured to interact with a magnetic storage medium, a first channel comprises a first sensor and first circuitry configured to adjust a plurality of first channel parameters, and a second channel comprises a second sensor and second circuitry configured to adjust a plurality of second channel parameters. The first and second channel parameters are independently adjustable by the first and second circuitry, respectively. A detector is coupled to the first and second channels, and configured to detect a head-medium interface event.
Abstract:
The implementations disclosed herein provide for a storage device including a preamplifier that dynamically adjusts at least one of a rise time and fall time of an analog write current pulse based on a length of a corresponding write transition and/or characteristics of a media location where the write transition is to be recorded.
Abstract:
Controlling a laser diode involves activating a first current source in preparation for writing to a magnetic recording medium. The first current source applies a threshold current to a laser diode that brings the laser diode close to an operating point. Responsive to a write signal, a second current source is activated that applies a write current to the laser diode. A combination of the write current and the threshold current fully energizes the laser diode and is less than a target recording current. Coincident with the activation of the second current source, a photodiode is activated that is optically coupled to the laser diode. The activated photodiode causes a feedback current to be applied to the laser diode.
Abstract:
The implementations disclosed herein provide for a storage device including a preamplifier that dynamically adjusts at least one of a rise time and fall time of an analog write current pulse based on a length of a corresponding write transition and/or characteristics of a media location where the write transition is to be recorded.
Abstract:
Polarity transitions of a write signal applied to a write coil correspond to first bit boundaries written to a magnetic recording media. A heat signal is applied to heat the magnetic recording media via a heat source while bits are being written. The heat signal includes negative pulses that de-energize the heat source during cooling periods corresponding to the writing of the first bit boundaries. The negative pulses are offset from the polarity transitions by a predetermined time.
Abstract:
A transducer is configured to interact with a magnetic storage medium, a first channel comprises a first sensor and first circuitry configured to adjust a plurality of first channel parameters, and a second channel comprises a second sensor and second circuitry configured to adjust a plurality of second channel parameters. The first and second channel parameters are independently adjustable by the first and second circuitry, respectively. A detector is coupled to the first and second channels, and configured to detect a head-medium interface event.
Abstract:
A circuit may be configured to reduce the power consumption and extend the life of a near field transducer of a heat-assisted magnetic recording (HAMR) device by pulsing a laser. The current that drives the laser may be of a frequency and magnitude so as to approximate the value of a continuous current in a continuous, non-pulsed laser. A system on chip (SOC), which may include a HAMR channel, can generate a laser data signal that may be synchronous with, and offset from, a write signal by a certain period of time, and may calculate certain parameters such as peak current and pulse width that may be applied to the signals in a preamp. The preamp signals can be used to program data to a disc medium.
Abstract:
Polarity transitions of a write signal applied to a write coil correspond to first bit boundaries written to a magnetic recording media. A heat signal is applied to heat the magnetic recording media via a heat source while bits are being written. The heat signal includes negative pulses that de-energize the heat source during cooling periods corresponding to the writing of the first bit boundaries. The negative pulses are offset from the polarity transitions by a predetermined time.
Abstract:
An apparatus includes a write element configured to apply a magnetic field to write data on a portion of a heat-assisted magnetic recording media in response to an energizing current. An energy source is configured to heat the portion of the media being magnetized by the write element. A preheat energizing current is applied to the write element during an interval before writing the data to the portion of the media. The preheat energizing current does not cause data to be written to the media and brings at least one of the write element and driver circuitry into thermal equilibrium prior to writing the data on the portion.
Abstract:
Controlling a laser diode involves activating a first current source in preparation for writing to a magnetic recording medium. The first current source applies a threshold current to a laser diode that brings the laser diode close to an operating point. Responsive to a write signal, a second current source is activated that applies a write current to the laser diode. A combination of the write current and the threshold current fully energizes the laser diode and is less than a target recording current. Coincident with the activation of the second current source, a photodiode is activated that is optically coupled to the laser diode. The activated photodiode causes a feedback current to be applied to the laser diode.