Abstract:
The embodiments disclose a patterned composite magnetic layer structure configured to use magnetic materials having differing temperature and magnetization characteristics in a recording device, wherein the patterned composite magnetic layer structure includes magnetic layers, at least one first magnetic material configured to be used in a particular order to reduce a recording temperature and configured to control and regulate coupling and decoupling of the magnetic layers and at least one second magnetic material with differing temperature characteristics is configured to control recording and erasing of data.
Abstract:
Provided herein is an apparatus comprising a substrate; a continuous layer over the substrate comprising a first heat sink layer; and a plurality of features over the continuous layer comprising a second heat sink layer, a first magnetic layer over the second heat sink layer, and a second magnetic layer, wherein the first and second magnetic layers are configured to provide a temperature-dependent, exchange spring mechanism.
Abstract:
Provided herein is an apparatus comprising a substrate; a continuous layer over the substrate comprising a first heat sink layer; and a plurality of features over the continuous layer comprising a second heat sink layer, a first magnetic layer over the second heat sink layer, and a second magnetic layer, wherein the first and second magnetic layers are configured to provide a temperature-dependent, exchange spring mechanism.
Abstract:
A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
Abstract:
A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
Abstract:
A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
Abstract:
In some embodiments, a thermally assisted data recording medium has a recording layer formed of iron (Fe), platinum (Pt) and a transition metal T selected from a group consisting of Rhodium (Rh), Ruthenium (Ru), Osmium (Os) and Iridium (Ir) to substitute for a portion of the Pt content as FeYPtY-XTX with Y in the range of from about 20 at % to about 80 at % and X in the range of from about 0 at % to about 20 at %.
Abstract:
A stack includes a substrate, a magnetic recording layer comprising FePtX disposed over the substrate, and a capping layer disposed on the magnetic recording layer. The capping layer comprises Co; at least one rare earth element; one or more elements selected from a group consisting of Fe and Pt; and an amorphizing agent comprising one to three elements selected from a group consisting of B, Zr, Ta, Cr, Nb, W, V, and Mo.
Abstract:
A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.
Abstract:
In some embodiments, a thermally assisted data recording medium has a recording layer formed of iron (Fe), platinum (Pt) and a transition metal T selected from a group consisting of Rhodium (Rh), Ruthenium (Ru), Osmium (Os) and Iridium (Ir) to substitute for a portion of the Pt content as FeYPtY-XTX with Y in the range of from about 20 at % to about 80 at % and X in the range of from about 0 at % to about 20 at %.