Abstract:
A light emitting device having improved light extraction is provided. The light emitting device can be formed by epitaxially growing a light emitting structure on a surface of a substrate. The substrate can be scribed to form a set of angled side surfaces on the substrate. For each angled side surface in the set of angled side surfaces, a surface tangent vector to at least a portion of each angled side surface in the set of angled side surfaces forms an angle between approximately ten and approximately eighty degrees with a negative of a normal vector of the surface of the substrate. The substrate can be cleaned to clean debris from the angled side surfaces.
Abstract:
A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/Al-based and Cr/Al-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/Al-based contacts.
Abstract:
A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/Al-based and Cr/Al-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/Al-based contacts.
Abstract:
A light emitting device having improved light extraction is provided. The light emitting device can be formed by epitaxially growing a light emitting structure on a surface of a substrate. The substrate can be scribed to form a set of angled side surfaces on the substrate. For each angled side surface in the set of angled side surfaces, a surface tangent vector to at least a portion of each angled side surface in the set of angled side surfaces forms an angle between approximately ten and approximately eighty degrees with a negative of a normal vector of the surface of the substrate. The substrate can be cleaned to clean debris from the angled side surfaces.
Abstract:
A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/Al-based and Cr/Al-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/Al-based contacts.
Abstract:
A light emitting device having improved light extraction is provided. The light emitting device can be formed by epitaxially growing a light emitting structure on a surface of a substrate. The substrate can be scribed to form a set of angled side surfaces on the substrate. For each angled side surface in the set of angled side surfaces, a surface tangent vector to at least a portion of each angled side surface in the set of angled side surfaces forms an angle between approximately ten and approximately eighty degrees with a negative of a normal vector of the surface of the substrate. The substrate can be cleaned to clean debris from the angled side surfaces.
Abstract:
A light emitting device having improved light extraction is provided. The light emitting device can be formed by epitaxially growing a light emitting structure on a surface of a substrate. The substrate can be scribed to form a set of angled side surfaces on the substrate. For each angled side surface in the set of angled side surfaces, a surface tangent vector to at least a portion of each angled side surface in the set of angled side surfaces forms an angle between approximately ten and approximately eighty degrees with a negative of a normal vector of the surface of the substrate. The substrate can be cleaned to clean debris from the angled side surfaces.
Abstract:
A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/Al-based and Cr/Al-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/Al-based contacts.