-
公开(公告)号:US20150134714A1
公开(公告)日:2015-05-14
申请号:US14537839
申请日:2014-11-10
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
IPC: G06F17/16
CPC classification number: G06F9/544 , G06F9/4887 , G06F9/5016 , G06F9/5066 , G06F12/08 , G06F17/16 , G06F2212/2542 , G06T1/60
Abstract: Disclosed herein is a shared memory systems that use a combination of SBR and MRRR techniques to calculate eigenpairs for dense matrices having very large numbers of rows and columns. The disclosed system allows for the use of a highly scalable tridiagonal eigensolver. The disclosed system likewise allows for allocating a different number of t00hreads to each of the different computational stages of the eigensolver.
Abstract translation: 这里公开了一种共享存储器系统,其使用SBR和MRRR技术的组合来计算具有非常大数量的行和列的密集矩阵的特征对。 所公开的系统允许使用高度可缩放的三角形固定器。 所公开的系统同样允许将不同数量的t00hreads分配给固定器的不同计算阶段。
-
公开(公告)号:US20160299874A1
公开(公告)日:2016-10-13
申请号:US15132085
申请日:2016-04-18
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
IPC: G06F17/16
CPC classification number: G06F17/16 , G06F12/0207
Abstract: Disclosed herein is a shared memory system that use a combination of SBR and MRRR techniques to calculate eigenpairs for dense matrices having very large numbers of rows and columns. The disclosed system allows for the use of a highly scalable tridiagonal eigensolver. The disclosed system likewise allows for allocating a different number of threads to each of the different computational stages of the eigensolver.
Abstract translation: 这里公开了一种共享存储器系统,其使用SBR和MRRR技术的组合来计算具有非常大数量的行和列的密集矩阵的特征对。 所公开的系统允许使用高度可缩放的三角形固定器。 所公开的系统同样允许将不同数量的线程分配给固定器的不同计算阶段。
-
公开(公告)号:US09798594B2
公开(公告)日:2017-10-24
申请号:US15408092
申请日:2017-01-17
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
CPC classification number: G06F9/544 , G06F9/4887 , G06F9/5016 , G06F9/5066 , G06F12/08 , G06F17/16 , G06F2212/2542 , G06T1/60
Abstract: Disclosed herein is a shared memory systems that use a combination of SBR and MRRR techniques to calculate eigenpairs for dense matrices having very large numbers of rows and columns. The disclosed system allows for the use of a highly scalable tridiagonal eigensolver. The disclosed system likewise allows for allocating a different number of threads to each of the different computational stages of the eigensolver.
-
公开(公告)号:US20170228267A1
公开(公告)日:2017-08-10
申请号:US15408092
申请日:2017-01-17
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
CPC classification number: G06F9/544 , G06F9/4887 , G06F9/5016 , G06F9/5066 , G06F12/08 , G06F17/16 , G06F2212/2542 , G06T1/60
Abstract: Disclosed herein is a shared memory systems that use a combination of SBR and MRRR techniques to calculate eigenpairs for dense matrices having very large numbers of rows and columns. The disclosed system allows for the use of a highly scalable tridiagonal eigensolver. The disclosed system likewise allows for allocating a different number of threads to each of the different computational stages of the eigensolver.
-
5.
公开(公告)号:US20140331014A1
公开(公告)日:2014-11-06
申请号:US14041974
申请日:2013-09-30
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
IPC: G06F12/00
CPC classification number: G06F15/17306 , G06F17/16
Abstract: High performance computing systems perform complex or data-intensive calculations using a large number of computing nodes and a shared memory. Disclosed methods and systems provide nodes having a special-purpose coprocessor to perform these calculations, along with a general-purpose processor to direct the calculations. Computational data transfer from the shared memory to the coprocessor incurs a data copying latency. To reduce this latency as experienced by the coprocessor, a complex computation is divided into work units, and one or more threads executing on the processor copy the work units from the shared memory to a local buffer memory of a computing node. By buffering these data for transfer from the local memory to coprocessor memory, and by ensuring that new data are copied while the coprocessor operates on older data, data copying latency is hidden from the coprocessor.
Abstract translation: 高性能计算系统使用大量计算节点和共享内存执行复杂或数据密集型计算。 公开的方法和系统提供具有专用协处理器的节点来执行这些计算,以及用于指导计算的通用处理器。 从共享存储器到协处理器的计算数据传输引起数据复制延迟。 为了减少由协处理器所经历的延迟,复杂的计算被划分为工作单元,并且在处理器上执行的一个或多个线程将工作单元从共享存储器复制到计算节点的本地缓冲存储器。 通过缓冲这些数据从本地存储器转移到协处理器存储器,并且通过确保在协处理器对旧数据进行操作时复制新数据,数据复制等待时间将从协处理器中隐藏起来。
-
公开(公告)号:US09547882B2
公开(公告)日:2017-01-17
申请号:US14537839
申请日:2014-11-10
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
CPC classification number: G06F9/544 , G06F9/4887 , G06F9/5016 , G06F9/5066 , G06F12/08 , G06F17/16 , G06F2212/2542 , G06T1/60
Abstract: Disclosed herein is a shared memory systems that use a combination of SBR and MRRR techniques to calculate eigenpairs for dense matrices having very large numbers of rows and columns. The disclosed system allows for the use of a highly scalable tridiagonal eigensolver. The disclosed system likewise allows for allocating a different number of threads to each of the different computational stages of the eigensolver.
Abstract translation: 这里公开了一种共享存储器系统,其使用SBR和MRRR技术的组合来计算具有非常大数量的行和列的密集矩阵的特征对。 所公开的系统允许使用高度可缩放的三角形固定器。 所公开的系统同样允许将不同数量的线程分配给固定器的不同计算阶段。
-
公开(公告)号:US09262799B2
公开(公告)日:2016-02-16
申请号:US14536477
申请日:2014-11-07
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
CPC classification number: G06F9/544 , G06F9/4887 , G06F9/5016 , G06F9/5066 , G06F12/08 , G06F17/16 , G06F2212/2542 , G06T1/60
Abstract: A method for computing eigenvectors and eigenvalues of a square matrix in a high performance computer involves dynamically reallocating the computer's computing cores for various phases of the computation process.
Abstract translation: 用于计算高性能计算机中的方阵的特征向量和特征值的方法涉及对计算过程的各个阶段动态地重新分配计算机的计算核心。
-
公开(公告)号:US20150130825A1
公开(公告)日:2015-05-14
申请号:US14536477
申请日:2014-11-07
Applicant: Silicon Graphics International Corp.
Inventor: Cheng Liao
IPC: G06T1/60
CPC classification number: G06F9/544 , G06F9/4887 , G06F9/5016 , G06F9/5066 , G06F12/08 , G06F17/16 , G06F2212/2542 , G06T1/60
Abstract: A method for computing eigenvectors and eigenvalues of a square matrix in a high performance computer involves dynamically reallocating the computer's computing cores for various phases of the computation process.
Abstract translation: 用于计算高性能计算机中的方阵的特征向量和特征值的方法涉及对计算过程的各个阶段动态地重新分配计算机的计算核心。
-
-
-
-
-
-
-