Abstract:
An algorithm for mapping memory and a method for using a high performance computing (“HPC”) system are disclosed. The algorithm takes into account the number of physical nodes in the HPC system, and the amount of memory in each node. Some of the nodes in the HPC system also include input/output (“I/O”) devices like graphics cards and non-volatile storage interfaces that have on-board memory; the algorithm also accounts for the number of such nodes and the amount of I/O memory they each contain. The algorithm maximizes certain parameters in priority order, including the number of mapped nodes, the number of mapped I/O nodes, the amount of mapped I/O memory, and the total amount of mapped memory.
Abstract:
An algorithm for mapping memory and a method for using a high performance computing (“HPC”) system are disclosed. The algorithm takes into account the number of physical nodes in the HPC system, and the amount of memory in each node. Some of the nodes in the HPC system also include input/output (“I/O”) devices like graphics cards and non-volatile storage interfaces that have on-board memory; the algorithm also accounts for the number of such nodes and the amount of I/O memory they each contain. The algorithm maximizes certain parameters in priority order, including the number of mapped nodes, the number of mapped I/O nodes, the amount of mapped I/O memory, and the total amount of mapped memory.